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Abstract

We present a large-scale study of imitating human demon-
strations on tasks that require a virtual robot to search for ob-
jects in new environments – (1) ObjectGoal Navigation (e.g.
‘find & go to a chair’) and (2) PICK&PLACE (e.g. ‘find mug,
pick mug, find counter, place mug on counter’). First, we
develop a virtual teleoperation data-collection infrastructure
– connecting Habitat simulator running in a web browser
to Amazon Mechanical Turk, allowing remote users to tele-
operate virtual robots, safely and at scale. We collect 80k
demonstrations for OBJECTNAV and 12k demonstrations
for PICK&PLACE, which is an order of magnitude larger
than existing human demonstration datasets in simulation or
on real robots. Second, we use this data to answer the ques-
tion – how does large-scale imitation learning (IL) (which
has not been hitherto possible) compare to reinforcement
learning (RL) (which is the status quo)? On OBJECTNAV,
we find that IL (with no bells or whistles) using 70k human
demonstrations outperforms RL using 240k agent-gathered
trajectories. This effectively establishes an ‘exchange rate’
– a single human demonstration appears to be worth ∼4
agent-gathered ones. Finally, accuracy vs. training data
size plots show promising scaling behavior, suggesting that
simply collecting more demonstrations is likely to advance
the state of art further. On PICK&PLACE, the comparison
is starker – IL agents achieve ∼18% success on episodes
with new object-receptacle locations when trained with 9.5k
human demonstrations, while RL agents fail to get beyond
0%. Overall, our work provides compelling evidence for
investing in large-scale imitation learning.
Project page: ram81.github.io/projects/habitat-web.

1. Introduction
General-purpose robots that can perform a diverse set of
embodied tasks in a diverse set of environments have to be
good at visual exploration. Consider the canonical example
of asking a household robot, ‘Where are my keys?’. To
answer this (assuming the robot does not remember the
answer from memory), the robot would have to search the
house, often guided by intelligent priors – e.g. peeking into

the washroom or kitchen might be sufficient to be reasonably
sure the keys are not there, while exhaustively searching
the living room might be much more important since keys
are more likely to be there. While doing so, the robot has
to internally keep track of where all it has been to avoid
redundant search, and it might also have to interact with
objects, e.g. check drawers and cabinets in the living room
(but not those in the washroom or kitchen!).
This example illustrates fairly sophisticated exploration, in-
volving a careful interplay of various implicit objectives
(semantic priors, exhaustive search, efficient navigation, in-
teraction, etc.). Many recent tasks of interest in the embodied
AI community – e.g. ObjectGoal Navigation [1, 2], rear-
rangement [3,4], language-guided navigation [5,6] and inter-
action [7], question answering [8–12] – involve some flavor
of this visual exploration. With careful reward engineering,
reinforcement learning (RL) approaches to these tasks have
achieved commendable success [13–17]. However, engi-
neering the ‘right’ reward function so that the learned policy
exhibits desired behavior is unintuitive and frustrating (even
for domain experts), expensive (requiring multiple rounds of
retraining under different rewards), and not scalable to new
tasks or behaviors. For complex tasks (e.g. object rearrange-
ment or tasks specified in open-ended natural language), RL
from scratch may not even get off the ground.
In this work, we advance the alternative research agenda of
imitation learning [18] – i.e. collecting a large dataset of
human demonstrations (that implicitly capture intelligent be-
havior we wish to impart to our agents) and learning policies
directly from these human demonstrations.
First, we develop a safe scalable virtual teleoperation data-
collection infrastructure – connecting the Habitat simulator
running in a browser to Amazon Mechanical Turk (AMT).
We develop this in way that enables collecting human demon-
strations for a variety of tasks being studied within the Habi-
tat [19,20] ecosystem (e.g. PointNav [2], OBJECTNAV [1,2],
ImageNav [21], VLN-CE [6], MultiON [22], etc.).
We use this infrastructure to collect human demonstra-
tion datasets for 2 tasks requiring visual search – 1) Ob-
jectGoal Navigation (e.g. ‘find & go to a chair’) and 2)
PICK&PLACE (e.g. ‘find mug, pick mug, find counter, place
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Figure 1. a) Example OBJECTNAV 1) human demonstration, 2) agent trained on human demonstrations, and 3) shortest path. Notice how
humans demonstrate sophisticated exploration behavior to succeed at this task in unseen environments, which is hard to engineer into the
right reward for an RL agent and is unlikely to be captured in shortest path demonstrations. An agent trained on human demonstrations learns
this exploration and object-search behavior. b) Success on the OBJECTNAV MP3D-VAL split vs. no. of human demonstrations for training.

on counter’). In total we collect 92k human demonstra-
tions, 80k demonstrations for OBJECTNAV and 12k demon-
strations for PICK&PLACE. In contrast, the largest exist-
ing datasets have 3-10k human demonstrations in simula-
tion [23–25] or on real robots [26, 27], an order of magni-
tude smaller. The first thing this data provides is a ‘human
baseline’ with sufficiently tight error-bars to be taken seri-
ously. On the OBJECTNAV validation split, humans achieve
93.7±0.1% success and 42.5±0.5% Success Weighted by
Path Length (SPL) [2] (vs. 34.6% success and 7.9% SPL
for the 2021 Habitat ObjectNav Challenge winner [15]).
On PICK&PLACE unseen environments test split, humans
achieve 94.9% success and 20.5% SPL (vs. 8.3% success
and 4.1% SPL for the IL w/ Human Demos). The success
rate (93.7% and 94.9%) suggests the task is largely doable
for humans (but not 100%). The SPL (42.5% and 20.5%)
suggests that even humans need to explore significantly.
Beyond scale, the data is also rich and diverse in the strate-
gies that humans use to solve the tasks. Fig. 1 shows an
example trajectory of an AMT user controlling a LoCoBot
looking for a ‘plant’ in a new house – notice the peeking
into rooms, looping around the dining table – all of which is
(understandably) absent from the shortest path to the goal.
We use this data to answer the question – how does large-
scale imitation learning (IL) (which has not been hitherto
possible) compare to large-scale reinforcement learning (RL)
(which is the status quo)? On OBJECTNAV, we find that IL
(with no bells or whistles) using only 70k human demonstra-
tions outperforms RL using 240k agent-gathered trajectories
(Table 1). This effectively establishes an ‘exchange rate’ – a
single human demonstration appears to be worth ∼4 agent-
gathered ones. Finally, the accuracy vs. training-data-size
plot (Fig. 1b) shows promising scaling behavior, suggest-
ing that simply collecting more demonstrations is likely to
advance the state of art further. On PICK&PLACE, the com-
parison is even starker – IL-agents achieve ∼18% success

Team / Method Success (↑) SPL (↑)

1) DD-PPO baseline [13, 15] 6.2% 2.1%
2) Active Exploration (Pre-explore) 8.9% 4.1%
3) SRCB-robot-sudoer 14.4% 7.5%
4) SemExp [28] 17.9% 7.1%
5) Red Rabbit (6-Act Base) [15] 24.5% 6.4%
6) Red Rabbit (6-Act Tether) [15] 21.1% 8.1%
7) ExploreTillSeen + THDA [16] 21.1% 8.8%

8) IL w/ 70k Human Demos 27.8% 9.9%

9) Humans∗ 93.7% 20.5%

Table 1. Results on Habitat ObjectNav Challenge TEST-STD [29].
* denotes results from VAL split.

VAL TEST

Method Success % (↑) SPL % (↑) Success % (↑) SPL % (↑)
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1) IL w/ Shortest Paths 1.9 1.8 1.7 1.6
2) IL w/ Human Demos 17.6 ±0.8 9.7 ±0.3 17.5 9.8
3) Humans 87.2 21.8 89.1 21.9
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4) IL w/ Shortest Paths 1.3 1.2 1.1 1.0
5) IL w/ Human Demos 15.9 ±0.2 8.4 ±0.4 15.1 8.3
6) Humans 85.0 21.0 86.1 20.5
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7) IL w/ Shortest Paths − − 0.2 0.3
8) IL w/ Human Demos − − 8.3 4.1
9) Humans − − 94.9 20.5

Table 2. Pick-and-place results on splits constructed with unseen
initializations in seen environments (1-3), with unseen instructions
(4-6), and with unseen environments (7-9).

on episodes with new object-receptacle locations, while RL
agents fail to get beyond 0% (Table 2).
On both tasks, we find that demonstrations from humans
are essential; imitating shortest paths from an oracle pro-
duces neither accuracy nor the strategic search behavior. In
hindsight, this is perfectly understandable – shortest paths
(e.g. Fig. 1(a3)) do not contain any exploration but the task
requires the agent to explore. Essentially, a shortest path is
inimitable, but imitation learning is invaluable. Overall, our
work provides compelling evidence for investing in large-
scale imitation learning of human demonstrations.
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