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Abstract

Home-assistant robots (e.g., mobile manipulator) fol-
lowing human instructions is a long-standing topic of re-
search whose main challenge comes from the interpretation
of diverse instructions and dynamically-changing environ-
ments. This paper proposes a hybrid planner for parsing
human instruction and task planning, and a graph-based
object navigation method to search unknown objects by ex-
ploiting a partially known semantic map. We present pre-
liminary evaluations of the proposed methods on human in-
struction parsing and object-to-object link prediction, and
demonstrate their effectiveness in human instruction follow-
ing tasks.

1. Introduction

Home-assistant robots share living and working spaces
with humans, and assist them by interpreting human in-
structions and performing corresponding tasks. Early sym-
bolic works exploited the syntactic structure of language
to understand human instructions and statically generated
a sequence of actions [12] [4] [6]. However, this type of
approach fails to interpret the diverse human instructions
nor captures semantic meaning in incomplete sentences.
To avoid processing natural language based on engineered
symbolic structure, the recent deep learning methods can
automatically learn the linguistic features via deep neural
networks [3] [1]. However, it is difficult to plan a sequence
of actions through end-to-end training on neural network.
To leverage the strengths of symbolic and learning based
approaches, we adopt a hybrid approach which combines
the deep learning methods for goal learning and the sym-
bolic approaches for task planning.

With the planned action sequence from Planning Domain
Definition Language (PDDL), a robot will reason where the
needed objects locate and then find them out. In previous
object navigation tasks, the robot searched for an instance of
an object category in an unseen environment without prior
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knowledge [2] [14] [10]. But real home-assistant robots
are often equipped with certain level of semantic knowl-
edge about the environment, regions, and objects [5] [7]. In
our experiments, we assume that the robot is equipped with
a partially known semantic map, which contains the infor-
mation of some objects’ positions but is unaware of others
due to the environment changes. To solve the problem, we
build a graph to represent the relationship among objects,
and use a graph neural network to reason the possible po-
sitions of the unknown target object and guide the search
process. Once the target object is found, the robot will exe-
cute the planned action sequence on the object.

2. Proposed Approach

Goal Learning and Symbolic Task Planning: Given
a natural language sentence L composed of K words, we
first pass it into a linguistic encoder to generate an embed-
ding vector q. The classifier then parses the embedding
vector ¢ to predict the action a, subject s, and object o.
For symbolic task planning, we employ the Planning Do-
main Definition Language (PDDL), a widely used symbolic
planning language. With a list of pre-defined objects and
their corresponding predicates (such as dirty, graspable), a
domain consists of primitive actions and corresponding ef-
fects. Besides, the planning problem is to transfer from the
initial state to the desired goal state, where the initial state is
formed with a list of objects with corresponding predicates
and the goal state is estimated from the classifier. From
the domain and problem specification, a PDDL planner pro-
duces a sequence of primitive actions to reach the goal state
when executed, a simple example is shown in green part of
Fig. 1.

Semantic Graph Neural Network: To improve the ef-
ficiency of object navigation, we exploit the fact that the
target unknown objects are usually located closely with
some known objects. For example, the remote is usually
placed close to the TV. To this end, we model the object-
to-object relationship in the form of graph representation
and use Graph Attention Networks (GAT) [13] to compute
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Figure 1. Illustration of symbolic goal learning and searching for unknown object “knife” with graph neural network (GNN).

relational features on the graph. We denote our graph by Multi Modal Framework (MMF) [11] and only train the

G = (V, E), where V and E denote the nodes and the edges language encoder with human instructions and correspond-
between nodes, respectively. Specifically, eachnode v € V ing ground-truth goal states. Our goal learning network
denotes an object category, and each edge e € F denotes a achieves 100% prediction accuracy in 1024 unseen explicit
relationship between a pair of object categories. The input human instructions, and the PDDL planner works perfectly
to each node v is a feature vector x, which includes ob- once the goal state is correctly learned.
ject category and attribute information. Compared to other Graph Neural Network Link Prediction: We obtain
traditional machine learning algorithms that find related ob- 115 graphs from the Visual Genome dataset including 108
jects like clustering, graph neural network has greater gen- different object categories in AI2THOR [8]. The GAT
eralization and extensibility: it can not only find out related model is trained for 500 epochs and the experiments are
objects using edge prediction but also encode spatial rela- repeated 5 times. The averaged link prediction accuracy is
tionships between different object categories. 89.66%, 88.28%, 87.58% in training, validation, and test
More specifically, we use the Visual Genome dataset [9], sets, respectively. This result demonstrates that our GAT
where each image is annotated with objects and the relation- can predict the related objects with high accuracy and help
ships between objects, to build the graph. We count the oc- to guide the unknown object navigation.
currence of object-to-object relationships in the dataset and Human Instruction Following: We adopt MaskRCNN
connect two nodes when the occurrence frequency of any as object detector and test the pipeline in 20 different
relationship is more than three. We build multiple graphs scenes, including kitchens, bedrooms, apartments and liv-
from the dataset by constructing a new graph every 20,000 ing rooms in AI2THOR. If the robot correctly predicts the
relationships and each graph is represented as a binary ad- goal state and finds out the unknown object, the human
jacency matrix A. The training task is the link prediction instruction is treated as completed. The instruction suc-
by using node embeddings h, = GAT(z,, A), which is cess rate and object navigation search efficiency (success
the hidden layer output after GAT information propaga- weighted by path length, SPL) are summarized in Tab. 1.
tion and aggregation. After we get the node embeddings, There are two failures cases: Firstly, the detector fails to de-
we use another neural network to predict the link probabil- tect small objects like butter knife and saltshaker. Secondly,
ity, Juy, = Predictor(hy,h,). During testing, the robot the robot sometimes needs to crouch to find the book in the
predicts the relationships between the unknown object and lower shelf or open the fridge to find the food.
other known objects, and search the place of known object Table 1. Experimental results of the human instruction following.
with highest 7,,,. If not found, we remove that known ob-
ject from the graph and repeat the process. Success rate 9;?7061(% 8%1;?‘170 97?11;1% Pld;—gg(;-%lace
SPL 0.68 0.59 0.64 0.59

3. Experimental Results

. , , 4. Conclusion and Future Work
Goal Learning: For learning symbolic goal represen-

tation from language’ we adopt the Symbohc Goal Learn- In this letter, we developed and demonstrated that the

ing Dataset', and select 8163 explicit human instructions’ hybrid planner performs perfectly with explicit instructions
which cover 33 objects and 4 daily activities, i.e., cut- and GAT could guide the unknown object navigation which

ting, cooking, cleaning, and pick-and-place. We adopt the leads to high success rate for human instruction following

tasks. Our future work will focus on two aspects: (1) encode

https://smartech. gatech.edu/handle/1853/66305 the spatla}l relat}onshlp into the gra}ph and estimate the spe-

2Explicit human instruction contains the subject and object inside cific spatial region of unknown objects. (2) implementation
which would make the training easier. of detailed robot execution and manipulation.
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