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Abstract

The ALFRED environment features an embodied agent
following instructions and accomplishing tasks in simu-
lated home environments. However, end-to-end deep learn-
ing methods struggle at these tasks due to long-horizon
and sparse rewards. In this work, we propose a princi-
pled neural-symbolic approach combining symbolic plan-
ning and deep-learning methods for visual perception and
NL processing. The symbolic model is enriched as explo-
ration progress until a full plan can be obtained. New per-
ceptions are added to a discrete graph representation that
is used for producing new planning problems. Empirical re-
sults demonstrate that our approach can achieve high scal-
ability with SOTA performance of 36.04% unseen success
rate in the ALFRED benchmark. Our work builds a foun-
dation for a neural-symbolic approach that can act in un-
structured environments when the set of skills and possible
relationships is known.

1. Introduction

Embodied instruction following require an agent to pro-
cess multimodal information and plan over long task hori-
zons. Recent advancements in deep learning (DL) models
have made grounding visual and natural language informa-
tion faster and more reliable [7] As a result, embodied task-
oriented agents have been the subject of growing interest
[9, 11, 12]. Benchmarks such as The Action Learning From
Realistic Environments and Directives (ALFRED) was pro-
posed to test embodied agents’ ability to act in an unknown
environment and follow language instructions [9]. The suc-
cess of DL has led researchers to attempt end-to-end neural
methods [10, 13]. In an environment like ALFRED, these
methods are mostly framed as imitation learning, where
neural networks are trained via a set of expert trajectories.
However, end-to-end optimization leads to entangled latent
state representation where compositional and long-horizon

Figure 1. Model Overview

tasks are difficult to solve. Other approaches use neural
networks to ground visual information into persistent mem-
ory structures to store information [1, 6]. These approaches
rely on templates of existing tasks, making them difficult to
generalize to new problems or unexpected action outcomes.
Agents for ALFRED need to deal with the composition of
fixed skills and long horizons despite being deterministic,
and the environment remains unchanged except for the ef-
fect of the agent’s actions. This motivates using methods
specialized in the composition of skills. Classical planning
is the most natural candidate given their high scalability [3].
However, classical planners assumes full observability. Our
main innovation relies on combining DL models for per-
ception and NLP with a new egocentric planner based on
successive planning problems formulated using the PDDL
syntax [2], both for exploration and task accomplishment.

We evaluated our approach on the ALFRED dataset and
achieved the SOTA success rate of 36.04% on the unseen
tasks. Compared with previous methods, our planning
framework can naturally recover from action failures at any
stage of the planned trajectory. In addition, by specifying a
set of objects and skills, our agent can be easily generalized
to other tasks with different goal compositions.



Unseen Seen
SR GC PLWSR PLWGC SR GC PLWSR PLWGC

Our Approach 0.36 0.40 0.03 0.03 0.40 0.44 0.03 0.04
LGS-FR 0.34 0.40 0.15 0.20 0.43 0.46 0.20 0.26
FILM 0.28 0.39 0.11 0.15 0.29 0.40 0.11 0.16

Table 1. Performance Comparison
2. Approach

Our proposed method consist of a visual module for se-
mantic segmentation and depth estimation, a language mod-
ule for goal extraction, a semantic spatial graph for scene
memorization, and an egocentric planner to conduct plan-
ning and inference. At time t = 0, we extract goal infor-
mation from the high-level language instruction. The agent
is then given a random exploration budget of 500 steps to
explore the environment. Then, at t = 500, we convert in-
formation gathered via semantic spatial graph as a PDDL
problem for the agent. We then use a novel open-loop re-
planning approach powered by an off-the-shelf planner to
facilitate exploration and goal planning. An overview of
our method can be seen in Figure 1

Vision and Language Module: We pre-trained MaskR-
CNN and U-Net models on the AI2-THOR environment to
conduct semantic segmentation and depth estimation [4, 5].
These models are used for identifying objects and obsta-
cles in the environment. For task goals, we extracted fea-
tures directly from labels produced by FILM authors that
are trained on multiple transformers [6].

Semantic Spatial Graph: The spatial graph serves as
the persistent memory of the agent during exploration. We
use a directed graph with location and orientation as nodes
and actions as edges. Object classes, segmentation masks,
and depth information are stored in the nodes. For every
task, we initialize the agent at position (0, 0, 0), and the
graph will be continually expanded via agent movements.

Egocentric Planning: We first specify the ontology of
the planning problems which includes action schemas, ob-
ject types, and possible facts schemas. The natural language
task description is then converted into a planning goal. Af-
ter the initial exploration phase, we use and update the se-
mantic spatial graph —initially empty––, indicating the new
position of the agent and what it perceives. The algorithm
iterates over these steps. a) it attempt to find a plan for
achieving the goal, and return it in case of success; b) if
there is no plan, we replace the goal with another fact called
(explore) associated with not visited states. We reduce
the risk of executing irreversible actions by only attempting
them when we have obtained a plan that should achieve the
goal. In each iteration, we updated a semantic spatial graph
to be used to build the new initial state of the agent, allowing
an incremental egocentric view of the environment.

3. Experiments and Results
We use the same metric provided by the ALFRED

leaderboard as evaluation criteria and benchmarked our re-

seen unseen
Objects Not Found 45% 24%
Collision 36% 64%
Interactions 9% 8%
Others 10% 4%

Table 2. Failure Modes

sult against FILM [6], which is the highest non-anonymous
model on the leaderboard. Our model achieved an unseen
success rate (SR) of 0.36 and 0.40 seen SR. This is an in-
crease of 6%(21% relative) improvement on unseen tasks
and 11%(38% relative) improvement on seen tasks. Our
qualitative examination of the generated trajectories indi-
cates that the planner’s ability to handle failure recovery
contributes the most to the performance of our method.
There is also an anonymous entry, LGS-FR, that has rela-
tively close performance to our model with an unseen SR of
34%. However no detail is shown regarding the approach
which making comparison difficult. Overall, our method
achieved SOTA on the ALFRED dataset in terms of both
seen and unseen SR. A detailed comparison can be seen in
Table 1. We also use our planner feedback to conduct er-
ror analysis on the test set. The analysis shows that task
failures are mostly due to depth and agents being unable to
locate the objects of interest. This failure is a combination
of objects spawning inside of a receptacle, inefficient explo-
ration, and failures in object recognition. The failure mode
is shown in Table 2.

4. Conclusion and Future Work

In this work, we proposed a novel iterative replanning
approach to solve embodied instruction following problems
and achieved SOTA performance on the ALFRED bench-
mark. We demonstrated that automated planning powered
by off-the-shelf planners could significantly improve rea-
soning through task decomposition and fault recovery. For
future research, we would like to improve location mapping
to account for geometric relationships among objects. We
might explore extracting more information from step-by-
step instructions to facilitate better exploration. We want
to improve our egocentric planner to take into account non-
deterministic effects, extending the scope of our method
beyond ALFRED. That is a promising direction as there
are efficient planning methods supporting actions with non-
deterministic effects [8].
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