
Learning Value Functions from
Undirected State-only Experience

Matthew Chang* Arjun Gupta∗ Saurabh Gupta
University of Illinois at Urbana-Champaign

{mc48, arjung2, saurabhg}@illinois.edu

1. Introduction
Offline or batch reinforcement learning focuses on learn-

ing goal-directed behavior from pre-recorded data of undi-
rected experience in the form of (st, at, st+1, rt) quadruples.
However, in many realistic applications, action information
is not naturally available (e.g. when learning from video
demonstrations), or worse still, isn’t even well-defined (e.g.
when learning from the experience of an agent with a differ-
ent embodiment). Motivated by such use cases, this paper
studies if, and how, intelligent behavior can be derived from
undirected streams of observations: (st, st+1, rt).

Our key conceptual insight is that while an observation-
only dataset doesn’t tell us the precise action to execute, it
may still tell us which states are more likely to lead us to the
goal than not, i.e. the value function V (s). In this paper we
present a method that learns value functions using Q-learning
on discrete latent actions obtained through a latent-variable
future prediction model. Our experiments show that using
learned value functions as dense rewards can lead to quick
policy learning through some small amount of interaction in
the environment, or they can guide the behavior of low-level
controllers directly, without any further training.

2. Latent Action Q-Learning
Our proposed approach decouples learning into three

steps: mining latent actions from state-only trajectories,
using these latent actions for Q-learning to obtain value func-
tions, and learning a policy to act according to the learned
value function. Refer to Figure 1 for an overview. If latent
actions are a state-conditioned refinement of the original
actions, Q-learning with latent actions will result in the same
value function as Q-learning with ground-truth actions [2].

2.1. Latent Actions from Future Prediction

Given a dataset D of observations streams
. . . , ot, ot+1, . . ., we learn the latent actions through

* denotes equal contribution. Project website: https : / /
matthewchang.github.io/latent_action_qlearning_
site/.
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Figure 1. Approach Overview. Our proposed approach Latent
Action Q-Learning (LAQ) starts with a dataset of (s, s′, r) triples.
Using the latent action learning process, each sample is assigned a
latent action â. Q-learning on the dataset of quadruples produces a
value function, V (s). Behaviors are derived from the value function
through densified RL, or by guiding low-level controllers.

future prediction. We train a future prediction model fθ,
that maps the observation ot at time t, and a latent action â
(from a set Â of discrete latent actions) to the observation
ot+1 at time t + 1, i.e. fθ(ot, â). f is trained to minimize
the L2 loss between the prediction fθ(ot, â) and the ground
truth observation ot+1. Each training sample (ot, ot+1) is
assigned to the action that leads to the lowest loss under the
current forward model.

2.2. Q-learning with Latent Actions

Latent actions mined from Section 2.1 allow us to com-
plete the given (ot, ot+1, rt) tuples into (ot, ât, ot+1, rt)
quadruples for use in Q-learning [8]. We note that this
Q-learning still needs to be done in an offline manner from
pre-recorded state-only experience. Value functions are ob-
tained from the Q-functions as V (s) = maxâ∈Â Q(s, â).

2.3. Behaviors from Value Functions

Given a value function, we derive behavior in the under-
lying MDP in the following two ways.
Densified Reinforcement Learning. We use the value func-
tion to create a potential-based shaping function F (s, s′) =
V (s′) − V (s), based on [5], and construct an augmented
reward function r′(s, a, s′) = r(s, a, s′) + F (s, s′). This
augmented reward is used with online RL to derive a policy.
Domain Specific Low-level Controllers. In more specific
scenarios, behavior can directly be obtained by picking the
low-level controller that conveys the agent to the state s′ that
has the highest value under the learned V (s).
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Figure 2. We experiment with five environments: 2D Grid World,
Freeway (Atari), 3D Visual Navigation, Maze2D (2D Continuous
Control), and FrankaKitchen.
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Figure 3. We show learning curves for acquiring behavior using
learned value functions. We compare densified RL with sparse RL.
Results are averaged over 5 seeds and show ± standard error.

3. Experiments

We design experiments to assess the quality of value func-
tions learned by LAQ from undirected state-only experience.
For each setting, we work with a pre-collected dataset of
experience in the form of state, next state and reward triplets,
(ot, ot+1, rt). We provide action labels to these triplets, and
produce value functions using the LAQ method described
above. We evaluate the learned value functions in two ways.

First, we measure the extent to which value functions
learned with LAQ without ground truth information agree
with value functions learned with Q-learning with ground
truth action information. We do this by measuring the Spear-
man’s rank correlation coefficient between the different value
functions. Our second evaluation measures the effectiveness
of LAQ-learned value functions for deriving effective behav-
ior in different settings: when using it as a dense reward, and
when using it to guide low-level controllers. Figure 2 shows
the environments which were used for our experiments.

3.1. Quality of Learned Value Functions

Table 1 reports the Spearman’s coefficients of value func-
tions obtained using different action labels: D3G [3], clus-

Table 1. We report Spearman’s correlation coefficients for value
functions learned using various methods with DQN, against a value
function learned offline using ground-truth actions (DQN for dis-
crete action environments, DDPG for continuous).

Environment D3G Clustering (Diff) Latent Actions

2D Grid World 0.959 1.000 0.985
Freeway – (image input) 0.902 0.961
3D Visual Navigation – (image input) 0.827 0.927

2D Continuous Control 0.673 0.490 0.844
Kitchen Manipulation 0.854 0.815 0.905

tering, and latent actions (ours). Our method outperforms
all baselines in settings with high-dimensional image ob-
servations. In state-based settings, where clustering state
differences is a helpful inductive bias, our method is still on-
par with, or superior to clustering state differences and even
D3G, which predicts state differences.

3.2. Using Value Functions for Downstream Tasks

Our experiments test the utility of LAQ-learned value
functions for acquiring goal-driven behavior. Figure 3 mea-
sures the learning sample efficiency. We compare to only
using the sparse reward, behavior cloning (BC) with ground
truth actions, and BC followed by sparse reward RL. The
following is a summary of our takeaways.

LAQ value functions speed up downstream learning.
Learning plots in Figure 3 show that, using LAQ-learning
value functions compares favorably to sparse reward (orange
line vs. blue line). Our method learns more quickly than
sparse reward and converges to a higher mean performance.
The same trend holds across other tested environments.

LAQ discovers stronger behavior than imitation learn-
ing when faced with undirected experience. An advantage
of LAQ over other imitation-learning based methods such
as BCO [7] and ILPO [4] is LAQ’s ability to learn from
sub-optimal or undirected experience. To showcase this, we
compare the performance of LAQ with BC with ground truth
actions (which serves as an upper bound on all methods in
this class). Learning plots in Figure 3 shows the effectiveness
of LAQ over BC and BC followed by fine-tuning with sparse
rewards. LAQ discovers stronger behavior than imitation
learning when faced with undirected data.

LAQ value functions can guide low-level controllers
for zero-shot control. Learned value functions can also be
used to guide the behavior of low-level controllers directly
at test time. We do this experiment in the context of 3D
visual navigation in a realistic simulation based on 3D house
scans [6]. The problem setup is based on the branching envi-
ronment from [1]. We find that LAQ learned value functions
result in a higher SPL (0.82) than clustering-based value
functions (0.57) and other baselines.



References
[1] Matthew Chang, Arjun Gupta, and Saurabh Gupta. Semantic

visual navigation by watching youtube videos. In NeurIPS,
2020. 2

[2] Matthew Chang, Arjun Gupta, and Saurabh Gupta. Learning
value functions from undirected state-only experience. arXiv
preprint arXiv:2204.12458, 2022. 1

[3] Ashley D. Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung,
Ankit Jain, Rui Wang, Adrien Ecoffet, Thomas Miconi, Charles
Isbell, and Jason Yosinski. Estimating q(s, s′) with deep deter-
ministic dynamics gradients. In ICML, 2020. 2

[4] Ashley D Edwards, Himanshu Sahni, Yannick Schroecker, and
Charles L Isbell. Imitating latent policies from observation. In
ICML, 2019. 2

[5] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy
invariance under reward transformations: Theory and appli-
cation to reward shaping. In ICML, pages 278–287. Morgan
Kaufmann, 1999. 1

[6] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili
Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,
Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra.
Habitat: A platform for embodied AI research. In ICCV, 2019.
2

[7] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral
cloning from observation. In IJCAI, 2018. 2

[8] Christopher John Cornish Hellaby Watkins. Learning from
delayed rewards. 1989. 1


	. Introduction
	. Latent Action Q-Learning
	. Latent Actions from Future Prediction
	. Q-learning with Latent Actions
	. Behaviors from Value Functions

	. Experiments
	. Quality of Learned Value Functions
	. Using Value Functions for Downstream Tasks


