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Abstract

Successful indoor navigation is a crucial skill for many
robots. This fundamental ability has been extensively stud-
ied through the task of PointGoal navigation in simulated
environments. With noisy observations and actuation, the
setting becomes more realistic and previously successful
agents fail dramatically. Visual Odometry has shown to
be a practical substitute for GPS+compass and can effec-
tively localize the agent from visual observations. With the
availability of multiple sensors and estimators, the question
naturally arises of how to make the most use of multiple
input modalities. When having access to multiple modali-
ties, the predictions of naive multi-modal approaches can
be dominated by a single one, impeding overall robust-
ness. Recent methods are modality-specific and can not
deal with “privileged” modalities, e.g., irregular or no ac-
cess to depth during test time. We propose the Visual Odom-
etry Transformer, a novel approach to multi-modal Visual
Odometry based on Vision Transformers that successfully
replaces GPS+compass. Our experiments show that the
model can deal with limited availability of modalities dur-
ing test time by implicitly learning a representation invari-
ant to the availability of input modalities.

1. Introduction

One of the most fundamental skills embodied agents
must learn is to effectively traverse the environment around
them, allowing them to move past stationary tasks and pro-
vide services in multiple locations [11]. The ability of an
agent to locate itself in an environment is vital to navigat-
ing it successfully [3, 17]. In a realistic PointGoal nav-
igation setting, the agent does not have access to perfect
GPS+Compass sensors [9]. Visual Odometry (VO) is one
way to localize the agent from noisy RGB and Depth ob-
servations [1]. Deploying a separate VO model has shown
to be beneficial when localizing the agent from visual ob-
servations only [3, 17] However, those methods are not ro-
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Figure 1. The Visual Odometry Transformer architecture with
RGB-D input and based on the Multi-modal Multi-task Masked
Autoencoder.

bust to sensor failure or “privileged” modalities, i.e. when
an input modality is only occasionally available at the test
time. Access to multiple modalities has shown to be bene-
ficial for many downstream tasks [12], and VO [10, 14, 18]
in particular. Recent work has investigated learning repre-
sentations from multiple ground truth modalities or pseudo
labels [2,6,8] that could act as a better initialization for such
approaches. However, the underlying Convolution Neural
Network (ConvNet) architecture of recent methods [3, 17],
assumes a constant channel size of the input. This reliance
makes dealing with multiple modalities and privileged ac-
cess to those sheer impossible. With its independence to the
input size, multi-modal methods, therefore, naturally turn
to the Vision Transformer (ViT) [2, 5, 6, 8]. In PointGoal
navigation, the action space (move fwd 0.25m, turn left

and right by 30◦) causes large displacements in all pixels,
requiring a larger receptive field to relate them and find cor-
respondences. We assume that the attention mechanism can
better exploit this property than locality-biased ConvNets.
We find that ViTs indeed learn to focus on image regions
that matter. To summarize, we propose the Visual Odom-
etry Transformer (VOT), a multi-modal ViT for VO in in-
door environments. With our work, we hope to emphasize
the potential of multi-modal representations for embodied
AI and navigation in particular. Code and visualization are
available at github.com/memmelma/VO-Transformer.

https://github.com/memmelma/VO-Transformer


2. Proposed Method
Following [17] we update the agent’s relative goal posi-

tion by its coordinate transformation parameterized by ro-
tation angle β̂Ct→Ct+1

∈ [0, 2π) and translation vector
ξ̂Ct→Ct+1 ∈ R2. To regress those VO parameters, we
propose a novel architecture that leverages the multi-modal
agent observations ot (RGB-D) at time step t, and exploits
the global property of the VO problem.

Dealing with all available modalities, the VOT follows
the Multi-modal Multi-task Masked Autoencoder (Multi-
MAE) [2] based on the ViT-B/16 [5], and pre-trained on
RGB, Depth, and semantic segmentation. We adopt the
fixed positional embedding and separate linear projection
layers for each modality from [2]. We keep the projec-
tions for RGB and Depth, and discard the one for seman-
tic segmentation as the modality is not available in our set-
ting. This design choice allows to easily extend the model
to new modalities by adding linear projections and interpo-
lating the positional embedding [2, 15]. An MLP-head es-
timates the VO parameters from a separate token passed to
the model, similar to the class token in [4,5]. Figure 1 shows
the presented architecture. We use the regression and geo-
metric invariance losses of [17]. Following [17], we collect
250 k observation-transformation pairs from the training set
of Gibson-4+ [11], and augment left and right actions.

As training data is scarce in VO settings [5, 7, 13], and
having a lot of it has shown to benefit ViT training [5, 16],
we deploy various techniques to improve data-efficiency.
During an extensive ablations study, we find the agent’s ac-
tion to be a strong prior on the estimation. To condition
the model on it, we pass an embedding of the action as a
separate token. Furthermore, we use a pre-trained Multi-
MAE [2] to speed up learning on less data.

3. Experimental Evaluation
We train our model on only RGB, only Depth, and

RGB-D with results in Table 1, and report success S,
Success weighted by (normalized inverse) Path Length
(SPL) [1], and Soft Success Path Length (SSPL) [3] on the
validation set of Gibson-4+. The Depth input emerges as
the most informative modality due to its geometric proper-
ties. Training the VO model on RGB hurts the navigation
performance as we find it to overfit the visual appearance of
the scenes and not being able to generalize to unseen ones.

We also evaluate the models’ invariance to privileged
modalities by dropping access to one of the two modal-
ities randomly. We find that even though the VOT was
pre-trained and fine-tuned on RGB-D, it heavily relies on
Depth input. However, VO models without access to
Depth causes the agent to momentarily get stuck in nar-
row passages. This delay causes the agent to reach the goal
slower than expected. In some cases, it even terminates the

Table 1. Results for different modality configurations (obs) and
dropped modalities (drp). VOT strongly depends on Depth but
the high SSPL shows an invariance to dropped modalities. The
ConvNet approach [17] (unified estimator, ResNet-50 backbone,
all geometric invariance losses) converges to a blind behavior
when not all modalities are available during test time.

method obs drp S ↑ SPL↑ SSPL↑
blind – – 0.00 0.00 5.40
oracle – – 97.89 74.80 73.10

[17] RGB-D – 64.50 48.90 65.40
[17] RGB-D RGB 0.00 0.00 5.40
[17] RGB-D Depth 0.00 0.00 5.40

VOT (ours) RGB – 59.30 45.40 66.70
VOT (ours) Depth – 93.30 71.70 72.00
VOT (ours) RGB-D – 88.20 67.90 71.30

VOT (ours) RGB-D RGB 75.90 58.50 69.90
VOT (ours) RGB-D Depth 26.10 20.00 58.70

episode as the maximum number of steps is reached even
though the agent still roughly follows the shortest path to the
goal. Even though success rate and SPL appear to diminish
drastically, the high SSPL indicates that the agent gets close
to the goal. These results show that the model implicitly
learns some invariance to the input modalities. However, it
still relies on certain features of both input modalities, mak-
ing it prone to small inconsistencies that get punished by the
success-dependent metrics of PointGoal navigation [1].

For turning actions left, right, the model learns to fo-
cus on both modalities and on image regions that are present
at both time steps. These findings suggest that the model
is looking for corresponding features in the observations it
can use to estimate the transformation between them. The
assumption is strengthened as we find the model to attend
primarily to the center regions of the image when estimating
the parameters for a fwd action. When varying the action
prior, i.e., passing different actions for the same observa-
tion pair, these findings reappear, indicating that the model
indeed learns to utilize the additional information.

4. Conclusions

Our work showcases the benefits of multi-modal ViT ar-
chitectures for VO in indoor PointGoal navigation. Through
our simple and easily expandable architecture, we hope to
draw attention to applications of multi-modal ViTs in em-
bodied AI. To overcome the performance gap between ac-
cess to all modalities and “privileged” ones, we suggest to
facilitate invariance during training by randomly dropping
modalities. Further fine-tuning the policy might help adap-
tation to the VO inconsistencies. Future work may consider
expanding the set of modalities and downstream tasks.
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