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Abstract

Deep reinforcement learning approaches have been a
popular method for visual navigation tasks in the computer
vision and robotics community of late. In most cases, the
reward function has a binary structure, i.e., a large positive
reward is provided when the agent reaches goal state, and a
negative step penalty is assigned for every other state in the
environment. A sparse signal like this makes the learning
process challenging, specially in big environments, where
a large number of sequential actions need to be taken to
reach the target. We introduce a reward shaping mecha-
nism which gradually adjusts the reward signal based on
distance to the goal. Detailed experiments conducted using
the AI2-THOR simulation environment demonstrate the ef-
ficacy of the proposed approach for object-goal navigation
tasks.

1. Introduction
Reward shaping for reinforcement learning is a way to

provide localized signals to an agent for encouraging be-
havior that is consistent with prior knowledge [7]. For the
task of indoor robot navigation in search of a target object
of interest, it is quite important for an agent to obtain in-
termediate auxiliary signals based on surrounding objects,
to ensure that it’s heading towards the goal. This is spe-
cially true for large environments, where the the robot may
need to take a number of steps to reach the goal [9]. A
popular reward function used in the object-goal navigation
literature [4,5,11,12,14] is of a binary nature, where a large
positive reward is given at the goal state, while a smaller
negative step penalty is assigned for every other state. Un-
fortunately, this type of a signal is quite sparse, thereby dis-
couraging the learning process.

An alternate approach which has gained interest [2, 8]
is to use geodesic distance to the closest target as a reward
signal. Although this is a denser function compared to the
binary reward, absolute knowledge about the closest dis-
tance to goal is a strong assumption that may not be easily
available outside certain simulation environments [10]. In

contrast, we propose a method that relies on the estimated
distance to objects calculated via different heuristics. Two
approaches which are similar to ours are that of Druon et
al. [3] and Ye et al. [13]. They both provide auxiliary sig-
nals based on the bounding box area of objects. However,
these rewards are only assigned for the target object, and
therefore, the signals are still quite sparse, specially when
targets are smaller in size.

In this work, we build on the initial approach described
in [9] by defining distance-based heuristics to modify the re-
ward for both target objects, and other large, salient objects
which have a close relationship with the target (called par-
ent objects). In Section 2, we describe two approaches for
this. Next, in Section 3, we discuss the results obtained by
utilizing the proposed reward shaping mechanism. Finally,
we conclude with a discussion in Section 4.

2. Methodology
Pal et al. [9] introduced a reward shaping mechanism

where the agent receives a “partial” reward, Rp, when it
can identify a parent object with close relationship to the
target. This is given by Rp = Rt ∗ Pr(t|p) ∗ k, where Rt

is the target reward, and Pr(t|p) is a probability distribution
of the relative “closeness” of all the parent objects, p, to a
given target object, t. Additional details can be found in [9].
Additionally, the scaling factor, k, is a constant kept fixed
at 0.1. Therefore, the partial reward is independent of the
distance between the agent and the parent/target objects, d.
Moreover, Rp was only provided when the agent is within
a distance threshold from the parent (set as 1m in [9]). In
this work, we propose two methods to address these prob-
lems by reformulating k as a factor of d. Furthermore, we
extend the Rp formulation towards both parent, and target
objects. The primary motivations for this are: (i) the agent
should be encouraged to identify parent objects whenever
they are visible, and (ii) by making the reward a factor of d,
the agent is further inspired to explore regions closer to p.

(i) Utilizing metric depth - Our first approach involves
using metric depth in the form of depth maps obtained di-
rectly from the AI2-THOR simulator [6]. In lieu of this, an
RGB-D sensor can also be used to get the estimated depth.



From the depth maps, we compute d as the average value of
the region, ϕ, bounded by an object’s bounding box. This is
illustrated in Figure 1a. Subsequently, the scaling factor is
formulated as a linear function, k′(d) = k ∗ (m ∗ d+ c). In
our experiments, m = −0.15, and c = 1 were empirically
chosen to ensure k′ ∈ [0, 1].

(a) Metric distance from depth maps (b) Relative distance from bbox area

Figure 1. Image on the left shows depth map with a bounding box
around the object. Inset contains the RGB image of the object.
d is obtained by finding the average distance of each pixel in the
bounding box. Image on the right shows the relative increase in
bounding box area of an object (A1 to A2) as the agent moves
closer. d is object distance when area is A2.

(ii) Utilizing bounding box area - While the metric
depth approach is intuitive, in theory, we observed that
due to the added sensor input in the form of depth maps,
the training time increased. Thus, our next approach was
to use a heuristic for relative distance, where the scaling
factor is calculated based on the assumption that as the
agent moves closer, an object’s bounding box (bbox) area
should proportionately increase. This method, apart from
being simple to implement, also reduces the dependence
on additional sensor data, thereby minimizing the compu-
tational load. For this strategy, the scaling factor is given
by k′(d) = k ∗ (1− (A1/A2(d))

0.5), where A1 and A2 are
bounding box areas of a particular object in the state, when
it was first seen by the agent and the current state respec-
tively. This is depicted in Figure 1b.

In the next section, we validate our proposed hypothesis
via extensive experiments.

3. Experiments and Results
We use the AI2-THOR [6] environment for our ex-

periments. The setup and train/test split are consistent

with other standard methods - GCN [12], SAVN [11], and
MJOLNIR-O/R [9]. We trained the agents for 3 × 106

episodes for each model. Furthermore, for every model,
we conduct experiments using 4 different reward functions
- binary reward rbin, baseline partial reward from [9], rbase,
and our two proposed rewards, namely depth-based, rdepth,
and area-based, rarea, respectively. The evaluation metrics
adopted from Anderson et al. [1].

Metric 1 discussion: Success rate (SR) - Table 1 shows
the performance for this metric. For nearly every model,
training via the proposed reward mechanism yields the best
results, specially for episodes with larger path lengths, i.e.
L ≥ 5, where further exploration of the environment might
be needed. This shows the benefits of adding a denser re-
ward signal based on distance to objects.

Metric 2 discussion: Success weighted by Path
Length (SPL) - As opposed to the results for success rate,
the SPL performance drops for the proposed methods. This
is shown in Table 2. A possible reason for this could be due
to the added incentive that the agent now gets to explore
regions around parent objects, before heading towards the
target. However, we do not necessarily view this as a major
drawback, as exploring the environment is an important fea-
ture, specially in large and previously unseen environments.

It should also be noted that generally, the denser
distance-based reward functions perform better for models
that consider object relationships (like GCN [12], and the
MJOLNIRs [9]). This supports our intuition that adding
auxiliary signal based on surrounding objects can aid in the
search of far-off target objects.

4. Conclusion

We introduced a distance-based reward shaping mecha-
nism that provides a denser feedback to the agent, thereby
encouraging it to explore more of the environment. We
showed that adopting this strategy leads to higher success
rate of reaching the target object for multiple models, spe-
cially for cases where the optimal path requires taking a
longer sequence of actions. However, due to the added ex-
ploration, the path length increases as a result. As part of
our future work, we plan to address this issue by adopting
imitation learning techniques [4, 5].

L ≥ 1 L ≥ 5

Models rbin
rbase ours

rbin
rbase ours

[9] rdepth rbbox [9] rdepth rarea
GCN [12] 33.1(0.8) 33.3(1.4) 31.7(0.7) 35.3(0.5) 25.0(1.4) 23.5(1.6) 26.9(1.1) 24.6(0.8)
SAVN [11] 34.7(0.5) 40.7(1.4) 32.2(0.9) 39.6(0.8) 25.8(0.8) 30.0(1.4) 26.81.3 31.7(1.5)

M O [9] 58.8(1.0) 64.1(0.7) 66.4(0.3) 66.3(1) 40.6(0.6) 46.6(1.6) 50.5(0.7) 51.5(1.3)

M R [9] 65.5(0.6) 68(0.9) 77.1(0.7) 69.7(0.9) 52.3(0.8) 52.3(0.5) 69.2(0.8) 57.3(1.3)

Table 1. Metric 1: Success rate (%). The mean score over 5 runs is
provided with the standard deviation as sub-scripts.

L ≥ 1 L ≥ 5

Models rbin
rbase ours

rbin
rbase ours

[9] rdepth rbbox [9] rdepth rarea
GCN [12] 10.0(0.4) 10.8(0.5) 5.5(0.2) 8.2(0.1) 10.3(0.7) 11.20.7 7.3(0.3) 8.7(0.3)
SAVN [11] 11.0(0.2) 11.1(0.3) 6.6(0.3) 10.50.2 11.7(0.1) 12.4(0.5) 10.50.3 12.8(0.6)

M O [9] 18.5(0.3) 20.7(0.2) 11.6(0.1) 15.80.4 17.8(0.3) 20.0(0.6) 13.7(0.3) 17.3(0.5)
M R [9] 24.4(0.3) 26.50.2 15.0(0.3) 16.8(0.2) 26.2(0.4) 27.2(0.3) 20.3(0.4) 19.3(0.4)

Table 2. Metric 2: SPL (%). The mean score over 5 runs is provided
with the standard deviation as sub-scripts.



References
[1] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navi-
gation agents. CoRR, abs/1807.06757, 2018. 2

[2] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Ab-
hinav Gupta, and Russ R Salakhutdinov. Object goal navi-
gation using goal-oriented semantic exploration. Advances
in Neural Information Processing Systems, 33:4247–4258,
2020. 1

[3] Raphael Druon, Yusuke Yoshiyasu, Asako Kanezaki, and
Alassane Watt. Visual object search by learning spatial con-
text. IEEE Robotics and Automation Letters, 5(2):1279–
1286, 2020. 1

[4] Heming Du, Xin Yu, and Liang Zheng. Learning object re-
lation graph and tentative policy for visual navigation. In
European Conference on Computer Vision, pages 19–34.
Springer, 2020. 1, 2

[5] Heming Du, Xin Yu, and Liang Zheng. {VTN}et: Visual
transformer network for object goal navigation. In Interna-
tional Conference on Learning Representations, 2021. 1, 2

[6] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu,
Abhinav Gupta, and Ali Farhadi. AI2-THOR: an interactive
3d environment for visual AI. CoRR, abs/1712.05474, 2017.
1, 2

[7] Adam Daniel Laud. Theory and application of reward
shaping in reinforcement learning. University of Illinois at
Urbana-Champaign, 2004. 1

[8] Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan,
Erik Wijmans, Wojciech Galuba, Stefan Lee, and Dhruv Ba-
tra. Thda: Treasure hunt data augmentation for semantic nav-
igation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 15374–15383,
October 2021. 1

[9] Anwesan Pal, Yiding Qiu, and Henrik Christensen. Learn-
ing hierarchical relationships for object-goal navigation. In
Proceedings of the 2020 Conference on Robot Learning, Pro-
ceedings of Machine Learning Research. PMLR, 16–18 Nov
2021. 1, 2

[10] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied AI Research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019. 1

[11] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,
Ali Farhadi, and Roozbeh Mottaghi. Learning to Learn
How to Learn: Self-Adaptive Visual Navigation Using Meta-
Learning. In IEEE CVPR, June 2019. 1, 2

[12] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and
Roozbeh Mottaghi. Visual semantic navigation using scene
priors. arXiv preprint arXiv:1810.06543, 2018. 1, 2

[13] Xin Ye, Zhe Lin, Haoxiang Li, Shibin Zheng, and Yezhou
Yang. Active object perceiver: Recognition-guided policy
learning for object searching on mobile robots. In 2018

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6857–6863. IEEE, 2018. 1

[14] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Ab-
hinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven vi-
sual navigation in indoor scenes using deep reinforcement
learning. In ICRA, pages 3357–3364. IEEE, 2017. 1


	. Introduction
	. Methodology
	. Experiments and Results
	. Conclusion

