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Abstract

Event cameras are novel sensors with outstanding prop-
erties such as high temporal resolution and high dynamic
range. However, event-based vision has been held back by
the shortage of labeled datasets due to the novelty of event
cameras. To overcome this drawback, we propose a task
transfer method to train models directly with labeled im-
ages and unlabeled event data. We leverage the generative
event model to split event features into content and motion
features. Thus, our approach unlocks the vast amount of ex-
isting image datasets for the training of event-based neural
networks. Our task transfer method outperforms methods
targeting Unsupervised Domain Adaptation for object de-
tection by 0.26 mAP and classification by 2.7% accuracy.

1. Introduction

The outstanding properties such as high dynamic range,
high temporal resolution, and low latency make event cam-
eras promising for several computer vision applications in
edge-case scenarios. However, event cameras suffer from
the scarcity of labeled datasets since event-based datasets
represent only 3.14% of the existing vision dataset [2,[8].

Instead of capturing images at a fixed rate, event cam-
eras measure changes in intensity asynchronously per pixel.
This results in a stream of events that encodes the time, lo-
cation, and polarity of the intensity change. For a more
in-depth survey, we refer to [3]. Despite the radical dif-
ferent working principle, the output of event and frame-
based cameras still contains a significant information over-
lap, as both cameras share the underlying principle of cap-
turing the scene irradiance through an optical system [14].
In this work, we show how this information overlap can be
leveraged for Unsupervised Domain Adaptation (UDA) of
event-based networks, in which labeled source (image do-
main Yj,,) and unlabeled target data (event domain Yoyen)
are available to transfer a task to the target domain. Code
can be found at https://github.com/uzh-rpg/
rpg_ev—-transfer| and additional results at https:
//youtu.be/fZnBSgni6PY

2. Method

In our framework, events yeyene and images yimg are pro-
cessed with separate encoders Fing and Feyene due to the
large domain gap between Yime and Yeyen, as shown in
Fig. [} As the asynchronous output signal of event cam-
eras also contains motion information, event cameras mea-
sure specific features (.vent about the scene, which stan-
dard cameras can not perceive in a single frame. This
non-overlapping information, however, hinders the image-
to-event task transfer as it is impossible to fully align the
embedding space. We solve this by separating event fea-
tures into sensor specific features (evene computed by a spe-
cific encoder Eeyent, anr, and content features Zeyen, Which
contain information shared in both domains ¥jmg and Yeyen.

Zimg :Eimg (yimg)

Zevent = Hevent (Yevent)
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Cevent = Eevent, attr(Yevent)-

The resulting shared features Zimg and Zeyenc are given as in-
put to the task branch 7', which computes the task-specific
output. To generate pseudo event and image pairs, shared
features from an image zjng are combined with event-
specific features (qyen from a random event sample to com-
pute a pseudo-flow field using a flow decoder Dy The re-
sulting pseudo-flow and the input image are then converted
to events Yevene in the refinement network Ry.r, The overall
architecture is depicted in Fig.

To enforce the embedding alignment, we apply adver-
sarial training [7]] with a PatchGAN discriminator network
Fia [9] to the latent features Zimg and Zeyen, and introduce
L! consistency losses Leycle on the latent variables zim, and
Cevent- The generation of realistic events from a single image
is enforced by additional adversarial losses Lyecons.disc. and
Lrecons.gen.» Which are applied on the reconstructed events
Yevent Using an event discriminator Feyen. Finally, the task
loss Liqsk 1s applied on the images and the fake events,
which both have corresponding image labels. The used con-
straints are visualized with red arrows in Fig.[I]
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Figure 1. As there is a large domain gap between events and grayscale images, we use two separate encoders Eiyg and Feyent (blue) to process unpaired
images and event frames. The applied loss constraints are visualized with red arrows. During inference, only the event encoder Eeyene and the task network

T are required, both are computationally light-weight networks.
2.1. Event Generation based on Pseudo-Flow

Following the event generation model [4]], see Eq. [2]
translated events can be generated by using the image gra-
dient VI, . and optical flow.
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Instead of optical flow, we propose to directly predict
pseudo-flow vectors v, .y, which implicitly contain the un-
known parameters At, cos o and C. Thus, we do not need
to compute these parameters explicitly. Our pseudo-flow is
not equivalent to optical flow as the adversarial training only
enforces realistic events by either adjusting the direction or
the magnitude of v(,. ). The resulting pseudo-flow field ad-
heres to the content extracted from an image iy, but with
the general motion information of the event data, encoded
in the sensor-specific feature (event.

3. Experiments

We validate our approach for event classification on
the Neuromorphic-Caltech101 (N-Caltech101) [11]] dataset
using the image-based Caltechl01 as a labeled source
dataset. For object detection, we train on the labeled im-
age dataset Waymo Open Dataset [16] and evaluate on the
Multi-Vehicle Stereo Event Camera Dataset (MVSEC) [18]].
While several modules are used during training, crucially,
during testing, we only use a fast ResNet-18 backbone. The
event histogram [10] is used as event representation to fa-
cilitate the image-to-event translation.

Results The classification accuracies are reported in
Tab. [T} Our approach outperforms the state-the-art method
E2VID by 2.7% in terms of accuracy. Moreover, our in-
ference network is a simple Resnet18, which is computa-
tionally much more lightweight than E2VID. Because of
the increased size of the training dataset, our approach even

Method Setting Accuracy 1
E2VID [14] UDA 0.821
VID2E [5] UDA 0.807
Simple Cycle UDA 0.577
Ours UDA 0.848
E2VID [14] Supervised 0.866
VID2E [5] Supervised 0.906
EST [6] Supervised 0.817
HATS [[15]] Supervised 0.642
Ours supervised Supervised 0.839
EvDistill* [17] UDA 0.902
Ours* UDA 0.938

Table 1. Classification accuracies on the N-Caltech101 dataset. To stay
consistent with the evaluation in [[17]], we report the performance achieved
by our model trained on the whole Caltech101 dataset(*).

Method Unpaired mAP T
ESIM [12] 0.02
E2VID [14] 0.28
Ours 0.54
EventGAN [19] X 0.30

Table 2. Mean average precision for the task of object detection on the
MYVSEC dataset.

outperforms the supervised methods. Moreover, the signifi-
cantly lower performance of a simple cycle translation UDA
framework shows that the feature space split is crucial for
the task transfer between images and events. On the task
of object detection, we compare against the event simulator
ESIM [12] as well as E2VID. Additionally, EventGAN [19]
is included as a paired baseline, i.e., it was trained with
events and the corresponding frames. The object detection
performances on MVSEC are reported in Table [2] as mean
Average Precision (mAP) [[1]. Compared to approaches
trained on unpaired data, our approach achieves the high-
est performance, outperforming the next best method [[13]]
by 26% in terms of mAP.
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