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Abstract

We introduce a simple method that employs pre-trained
CLIP encoders to enhance model generalization in the AL-
FRED task. In contrast to previous literature where CLIP
replaces the visual encoder, we suggest using CLIP as an
additional module through an auxiliary object detection ob-
jective. We validate our method on the recently proposed
Episodic Transformer architecture and demonstrate that in-
corporating CLIP improves task performance on the unseen
validation set. Additionally, our analysis results support
that CLIP especially helps with leveraging object descrip-
tions, detecting small objects, and interpreting rare words.

1. Introduction
Embodied instruction following (EIF) tasks entail ex-

ecuting fine-grained navigation and interaction action se-
quences according to natural language directives. This
requires processing and understanding information from
heterogeneous sources to successfully navigate and inter-
act with unseen environments [1, 7]. In the multimodal
research community, large-scale pre-trained models have
been shown to improve multimodal alignment and general-
ization performance [2,5,8,14]. In particular, several recent
works evaluate the CLIP (Contrastive Language Image Pre-
training) [10] model’s capabilities for embodied AI tasks,
including object navigation [3, 4] and vision language nav-
igation [6, 11, 13]. The most common approach in this di-
rection has been simply replacing the visual encoder with
CLIP’s visual encoder.

In this work, we hypothesize that pre-training on large-
scale image-text pairs will induce more generalizable multi-
modal representations, leading to better performance in un-
seen environments of the ALFRED task [12]. In contrast
to previous literature, we propose a simple model-agnostic
method to use CLIP as an auxiliary module to take advan-
tage of CLIP’s multimodal alignment capabilities. Con-
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Figure 1. ET-CLIP model as modified from [9]

cretely, we introduce a novel object detection loss with-
out having to change the model’s architecture. We investi-
gate the proposed method through preliminary experiments
based on the Episodic Transformer (ET) [9] architecture, a
competitive system on the ALFRED leaderboard. Our em-
pirical results suggest that our novel loss objective improves
generalization to unseen environments, especially by allevi-
ating the difficulty of detecting small objects and interpret-
ing rare words – which are challenging error conditions in
current state-of-the-art models.

2. Proposed Approach
We use CLIP [10] as an auxiliary source of information

for object detection and interaction by including CLIP as
an additional module in ET [9]. During training, we feed
camera observation inputs from ET into CLIP along with a
list of all ALFRED object words (with “none” also being
an option). A predicted object for each camera observa-
tion is obtained from both the CLIP module and ET, and
we compute their object prediction losses: LCLIP(obj) and
LET(obj), respectively. The final object loss in ET is as fol-
lows:

L(obj) = α · LCLIP(obj) + (1− α) · LET(obj)
where α ∈ [0, 1] (see Figure 1)

Both ET and CLIP weights are updated during training.
During inference, the CLIP module is ignored, and object
prediction is solely done by ET.
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Methods Success Rate ↑ Goal-Conditioned
Success Rate ↑

ET-Baseline [9] 0.1 7.8
ET-CLIP 1.0 7.9

Table 1. Success rates and goal-conditioned success rates of
the baseline Episodic Transformer (ET) model and our ET-CLIP
model on the unseen validation set.

3. Preliminary Experiments & Results

Experimental setting We run our baseline experiments
based on the code released by the authors of the ET paper1.
More specifically, we use the base ET model, which does
not employ the data augmentation strategy. We train both
the ET baseline and the ET-CLIP models for 20 epochs,
and refer to the original ET model for hyperparameters. The
weighting coefficient α of the auxiliary CLIP loss was cho-
sen as 0.5 based on the magnitude of the two loss terms to
ensure that the loss ranges are similar in the two models.
We note that the discrepancy of our results from [9] stems
from different random seeds, as noted by the authors2.

Results Table 1 shows the results for success rate and
goal-conditioned success rate of the ET-Baseline and the
ET-CLIP models for the unseen validation splits. As seen
in Table 1, the ET-CLIP model performs better in unseen
scenes. This suggests that adding CLIP object detection as
an auxiliary loss helps with generalization. We further an-
alyze how CLIP aids in performance improvement for spe-
cific error conditions, pertaining to task instruction charac-
teristics in Section 4.

4. Analysis

We investigate how integrating CLIP helps the ET
model’s performance on natural language directives. In par-
ticular, we look into three subsets of instructions that con-
tain common sources of error: instructions including fine-
grained object properties, small objects, and rare semantics.
We report our results in Table 2.

Object properties Interestingly, we find that ET-CLIP
excels at instructions, noting specific object characteris-
tics such as colors (e.g., “Turn around, walk to the red
arm chair”), improving the goal-conditioned success rate
by 0.3%. The addition of our CLIP module facilitates
the model to leverage specific visual cues stated in the

1https://github.com/alexpashevich/E.T.
2https://github.com/alexpashevich/E.T.#et-with-

human-data-only

Subset ET ET-CLIP Improvement

All 7.8 7.9 + 0.1

Object properties 7.7 8.0 + 0.3
Small objects 5.1 5.6 + 0.5
Rare semantics 5.9 6.7 + 0.8

Table 2. Goal-conditioned success rates on the unseen validation
set of the ET-Baseline and ET-CLIP on subsets of instructions.

language directives more effectively, due to the vision-
language alignment learned from pre-training. This is im-
portant for correct object detection in embodied interaction
tasks, especially when the environment requires semanti-
cally disambiguating objects of the same class.

Small objects Existing state-of-the-art models in AL-
FRED struggle with detecting small objects [7, 9, 15], as
they take up a negligible portion of the input image. The
range of success rates in this instruction subset (5.1-5.6)
is lower compared to the global average (7.8-7.9), which
aligns with previous findings. Surprisingly, ET-CLIP im-
proves the goal-conditioned success rate by 0.5% in in-
structions that involve manipulating smaller objects, such
as “pencil” or “keys”. As the pre-trained CLIP model is
trained with image-caption pairs, it is likely that the result-
ing representations are conducive to the semantics of the
image, even when objects are small in size.

Rare semantics We additionally validate the hypothesis
whether CLIP helps ET better understand instructions with
rare words, which we define as words that appear less than
30 times in the training set. Since CLIP is trained with nu-
merous captions, it is likely that ET-CLIP can benefit from
this knowledge and in turn interpret rare words better than
the baseline. Our results show that ET-CLIP improves ET
by 0.8% for rare semantics, which affirms our hypothesis.

5. Conclusion
In this work, we explore the potential of incorporating

pre-trained CLIP encoders to the ALFRED task. The nov-
elty of our method lies in leveraging CLIP as an additional
module through an auxiliary object detection loss. Our ap-
proach can be easily applied to other models that employ
object detectors. Our modification upon the Episodic Trans-
former model shows that using CLIP improves task per-
formance especially in unseen environments, enhancing the
model’s ability to deal with object properties, small objects,
and rare semantics. In future work, we hope to validate the
effectiveness of our approach on other models in the field of
embodied instruction following, to further improve where
current models are failing.
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