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1. Introduction

Robots excel in performing repetitive and precision-
sensitive tasks in controlled environments such as ware-
houses and factories [2]. However, this excellence has not
been yet extended to embodied AI agents providing assis-
tance in uncontrolled environments, i.e. assisting humans
in everyday tasks at home. Inspired by the catalyzing ef-
fect that benchmarks have played in the AI fields such as
computer vision [4,8] and natural language processing [12],
the community is looking for new benchmarks for embod-
ied AI, often running on simulation to leverage their safety,
reproducibility and speed. Different to the very clear and
uniformly adopted definitions of success in CV and NLP
benchmarks, in embodied AI each benchmark defines tasks
using a different formalism, often specific to one environ-
ment, simulator or domain, making it hard to develop gen-
eral and comparable solutions.

The most common ways to define embodied AI tasks in-
clude geometric, image, language, experience, and predi-
cate [1]. The most adopted is geometry: manually defining
regions to place objects (rearrangement) or the robot (nav-
igation) to claim success [5, 6, 11, 14, 15]. While provid-
ing an exact guidance to the agent, this formulation requires
explicit knowledge of the object/robot valid goal poses for
each scene, involving a manual process that does not gener-
alize to other scenes. Experience-based goal allow agents to
collect observations in the goal environment [1, 13]. How-
ever, despite its simplicity, providing a goal environment in
the real world is challenging. Language goal describe con-
figurations with natural language [9]. This formulation is
the closest to defining in the logic domain and more inter-
pretable to human, but is less concise and adds the challenge
of language understanding. To alleviate the aforementioned
limitations, we note that using logic predicates to define
tasks provides more generalizability to different scenes and
simulators, and is closer to real world task definitions.

BEHAVIOR [10] is a set of 100 household activities for
evaluating embodied AI agents defined in BEHAVIOR Do-
main Definition Language (BDDL) with synsets and logic

predicates instead of grounded object instances and repre-
sentations that depend on simulator features, providing a
level of abstraction that can be adapted to any simulator and
scene assets while allowing a flexible configuration space
similar to how humans define tasks in the real world. Al-
though BEHAVIOR is simulator-agnostic, so far it has only
been integrated with iGibson 2.0 (iG 2.0) [7]. Recent re-
lease of Habitat 2.0 (H2.0) [11] shows a promising test bed
for BEHAVIOR, as they provide a significantly higher sim-
ulation speed and thus allowing more experiences in the
same time period.

In this work, we bring 45 out of the 100 BEHAVIOR
activities which involve only kinematic states into H2.0 to
benefit from its fast simulation speed as a first step towards
demonstrating the ease of adapting activities defined in the
logic space into different simulators, in the process equip
H2.0 with a even richer set of iG 2.0 interactive scenes and
assets.

2. BEHAVIOR in H2.0
Fully supporting BEHAVIOR activities in a new simula-

tor imposes five requirements, as stated in Section 5 in the
BEHAVIOR paper [10]: 1) object-centric representation,
2) simulate physics and sensor signals, 3) non-kinematic
states, 4) instance sampling from BDDL conditions, 5) state
predicate checking. H2.0 naturally satisfies requirement 2)
through its variety of sensor signals and the physics sim-
ulation through Bullet [3]. In this work, we extend H2.0
for the requirements 1), 4) and 5). For 1), we extend the
H2.0 simulator to keep track of the additional object-centric
state information needed for evaluating activity progress
with BDDL. For 4), we enable H2.0 to use iG 2.0 assets
and leverage the sampled instances from iG 2.0. For 5),
we implement the pipeline to evaluate each kinematic state
predicate. The missing requirement 3) is a current limitation
of our effort: we have only kinematic states. This restricts
our effort to support 45 out of 100 BEHAVIOR activities.

Loading BEHAVIOR Instances in H2.0. Many objects
in daily household activities require interaction with ob-
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Figure 1. Performing one episode of BEHAVIOR activity to collect misplaced item through teleoperation. Top row: observation key-
frames from iG 2.0. Bottom row: observation key-frames from H2.0.

jects’ articulation mechanisms, from loading dishes into a
dish washer to opening doors and beyond. For simulators
to support scenes that closely resemble real world scenar-
ios, having more articulated objects that represents their real
world counterparts in various scene layouts is highly desir-
able. H2.0’s ReplicaCAD dataset lacks abundance in object
categories, articulated objects, and scene layouts, despite
the richness in carefully designed room configurations, as
shown in Table 1. Adding iG 2.0 scenes and assets allows
H2.0 users to train and evaluate their AI agents with far
more diverse environments and object set, and in particu-
lar more articulated objects to interact with.

Checking Predicates for BEHAVIOR Activities in H2.0.
BEHAVIOR requires seven kinematic states (NextTo, On-
Top, etc.) and fourteen non-kinematic states (Burnt, Sliced,
etc.). In this work we focus on implementing kinematic
states in H2.0 that are essential for many BEHAVIOR ac-
tivities. We provide a BDDL backend for H2.0 that sup-
ports predicate checking for NextTo , Inside, OnFloor, On-
Top, Touching, and Under. For validating task completion
progress and task success, we leverage the logic evaluation
mechanism from BDDL. Overall, our effort facilitates train-
ing and evaluating on 45 out of 100 BEHAVIOR activities.

3. Experimental Validation
To demonstrate and validate our implementation, we per-

form an episode of the collect misplaced item activity in the
Wainscott 0 int apartment in both iG 2.0 and H2.0 through
teleoperation.

The captured key-frames in Figure 1 correspond to ob-
servations when performing the activity. Benefited from
BEHAVIOR’s logic domain specification, we are able to
implement the same activities in two different simulators
without altering the activity definition in any way. Note

Asset Apt. Rm. Cat. Obj. A.O.

BEHAVIOR 15 100 391 1217 339
ReplicaCAD 1 1 41 1201 8

Table 1. BEHAVIOR (iG 2.0) and ReplicaCAD (H2.0) assets com-
parison, based on the number of apartments, rooms, layouts, object
categories, objects, and articulated objects.

that the differences in object appearances are due to lighting
setup and using non-pbr rendering in H2.0.
Performance Comparison of iG 2.0 vs. H2.0. One of
our goals in bringing BEHAVIOR to H2.0 is to gain perfor-
mance benefit. Our effort enables a fair performance com-
parison of iG 2.0 and H2.0 with the same assets.

From our evaluation, H2.0 provided 10.4x speed up in
an iG 2.0 scene with 64 processes on 8 GPUs. However, as
the number of objects increase, the performance benefit of
H2.0 over iG 2.0 decreases to 1.5x with 16 processes on 1
GPU and 1.25x with 64 processes on 8 GPUs, and 0.94x on
a single process.

4. Next Steps
In this work, we ported BEHAVIOR household activ-

ities into H2.0, demonstrating that defining tasks in the
high-level logic domain allows simple implementation of
the tasks in different simulators. To further demonstrate the
behavior of agents trained on the same task in different sim-
ulators, we plan to provide simple baseline training results
in both iG 2.0 and H2.0, and release the code publicly to
facilitate research in this direction. As a main limitation,
our work currently only enabled activities with kinematic
states; a natural extension is to implement the relevant ex-
tended object states and predicate checking mechanisms for
the non-kinematic states to support even more BEHAVIOR
activities.
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