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Abstract

Substantial progress has been achieved in embodied
visual navigation based on reinforcement learning (RL).
These studies presume that the environment is stationary
where all the obstacles are static. However, in real cluttered
scenes, interactable objects (e.g. shoes and boxes) blocking
the way of robots makes the environment non-stationary. We
formulate this interactive visual navigation as a Partial Ob-
served Markov Decision Problem. To handle it, we propose
a transformer encoder to learn a belief state which captures
the long spatial-temporal dependencies of the aggregated
observations in the memory. However, leveraging the trans-
former architecture in the RL settings is highly unstable. We
propose a surrogate objective to predict the next waypoint,
which facilitates the representation learning and bootstrap
the RL. We demonstrate our method in the iGibson environ-
ment and experimental results show a significant improve-
ment over the interactive Gibson benchmark and the related
recurrent RL policy both in the validation seen scenes and
the test unseen scenes.

1. Introduction

Traditional navigation tasks require the agent to reach
the destination under the premise of avoiding obstacles in a
static environment which is applicable in some empty sce-
narios such as outdoors or in factories. However, the dy-
namic scenarios inherent to real human environments, such
as offices and coffee shops, contain a large number of inter-
active objects, such as furniture, toys, shoes, etc. The robot
has to interact with the environment by pushing or moving
the obstacles away to clear the path. Learning to navigate
in the interactive environment considering the physical in-
teraction remains several challenge.

In the interactive navigation task, the main challenge
is the partial observation problem that arises from the
non-stationary environment where the interactable objects
are randomly placed blocking the way to the destination.
Therefore, the robot has to figure out whether it can push
the obstacles out of the way by leveraging the history in-
formation. To overcome it, it is popular to use recurrent
neural networks (RNNs) such as LSTM or GRU [2] to ag-
gregate the past observation and actions [5, 7]. However,
RNNs’ inability to capture the long-term dependencies of
the memory is not suitable for this task. We apply a trans-
former encoder, which is improved from the scene memory
transformer [3] with residual connection and local attention
mechanism, to handle the long sequence and ensure the sta-
bility of training simultaneously.

In general, to tackle interactive visual navigation, We
propose a deep reinforcement learning model with the
transformer-based memory, which can learn to navigate in
a cluttered room and interact with the obstacles based on
the accumulated experience. Besides, a surrogate objective
is proposed to optimize the transformer encoder for a stable
and sufficient state representation. We train and evaluate the
model in the Interactive Gibson Environment [8] rendering
based on real-world homes and additional interactable ob-
jects from the Google Scanned Objects dataset [4]. Our ap-
proach outperforms the Interactive Gibson Benchmark with
over 17% improvement in success rate and 9.2% in success
weighted by shortest path (SPL) [1].

2. Approach

As described above, to alleviate the partial observed
problem, we define a state representation ϕZ as a stochas-
tic mapping from the historical observation sequences to a
representation space Z: p(Z = zt|O0, O1, . . . , Ot). We
formulate the interactive navigation task as a partially ob-



served Markov decision problem (POMDP). Formally, the
POMDP is defined as a tuple (Z,A, τ, r, γ), where Z,A, r
are the belief state, action, and reward. τ is the belief state
transition function and γ ∈ [0, 1] is the discount factor.

2.1. Belief state encoder

Memory The memory is initialized as an empty set at the
beginning of each episode. During the robot exploration
period, we maintain the Mt in fixed-length l by storing the
embedding of the current observation Ot.
Transformer encoder Motivated by GTrXL [6], based on
the Attention function [9], we modify the position of the
layer normalization (LN) to reconstruct the AttBlock. The
AttBlock takes the et ∈ R1×de , Mt ∈ Rl×de as the input,
where l is the size of memory, de is the dimension of the
embedding. Therefore, the embedding of the current obser-
vation can directly flow through the AttBlock without any
transformation, which stabilizes the transformer-based RL
algorithm substantially.

AttBlock(et,Mt) = FC (LN (H)) +H,

where H = Att(etW
Q,MtW

K ,MtW
V ,Mask(Mt)) + et

(1)
where the Mask is the function calculated according to the
dimension of Mt. WQ ∈ Rde×dk , WK ∈ Rde×dk and

The transformer encoder comprises a stack of P
AttBlock, where the output of each AttBlock can be
viewed as the query over the next AttBlock.

2.2. Learning objective of the state representation

The optimal shortest path between the agent and the goal
is discretized into several waypoints. Intuitively, if the state
representation ϕZ is sufficient for the optimal navigation
policy π∗(at|zt), it should preserve enough information for
the prediction of the next waypoint. Accordingly, the pre-
diction of the next waypoint can be regarded as the surro-
gate objective to optimize the state representation ϕZ .

During the training stage, the waypoints sampled from
the shortest path can be calculated by A∗ algorithm on the
global map information S. Therefore, we can minimize the
KL divergence between the first optimal waypoint w given
the state st and the probability distribution of the output ŵ
of the prediction network given zt.

KL(p(w|st)||p(ŵ|zt)) = Ep(w|st)[log p(w|st)− log p(ŵ|zt)]
= H(w)− Ep(w|st)[log p(ŵ|zt)],

(2)
where H(w) is the entropy of the optimal waypoint and it
dose not influence on the optimization process. Then, the
optimzation objective of the state representation is to maxi-
mize Ep(w|st)[log p(ŵ|zt)].

Accordingly, the loss function of the surrogate objective
to predict the next optimal waypoint contains two compo-

nents specifying: 1) the angle prediction of the waypoint
Lθ, and 2) the distance prediction of the waypoint Ld.

L =

L∑
i=s1

(1− cos(θi − θ̂i)) +

L∑
i=1

(di − d̂i)
2, (3)

where L is the length of the sequence, θ and d are the angle
and distance of the optimal waypoint relative to the robot
respectively. θ̂ and d̂ are the corresponding estimation.

3. Experiment

Validation Seen Test Unseen
Methods SR SPL EE INS0.5 SR SPL EE INS0.5

Baselines:
Random 1.0 0.4 - - 0.6 0.2 - -
Xia et al. [10] 68.8 41.5 92.5 67.0 59.7 37.0 92.3 64.6
Savva et al. [7] 72.3 43.1 95.7 69.4 66.7 40.3 95.6 67.9

ours 82.8 48.7 94.5 71.6 76.7 46.2 93.9 70.0
Ablations:

ours w/o Lθ 70.8 43.0 94.4 68.7 61.0 38.8 92.4 65.6
ours w/o BSE 78.2 45.6 93.4 69.5 68.3 41.7 92.7 67.2

Table 1. Performance comparison. We show the result of the
comparison of the performance of our method with the previous
state-of-the-art method along with the ablation study.

Representation study. According to the performance
of RL agents trained with different state representations,
which are optimized with the corresponding surrogate ob-
jective. Optimizing the prediction of the angle between the
agent and the next waypoint produces sufficient representa-
tion while estimating the distance may have difficulty pre-
dicting the waypoint. The end-to-end RL performs poorly.
Comparative experiment. We involve the performance
of several baselines including Random, Xia et al. [10] and
Savva et al. [7] The results are shown in Table 1. Randomly
sampling the policy from the action space is impossible to
work. Notably, our method outperforms the baselines in
SR, SPL, and INS while the EE is slightly lower than Savva
et al.’s work because of the increasing interaction. Partic-
ularly, the success rate increases by over 10% compared to
the best of the baseline. The comparison with baselines jus-
tifies the effectiveness of our method.
Ablation study. The performance of ‘ours w/o Lθ’ drops
noticeably, which indicates that the angle prediction is im-
portant when the robots planning the route. The perfor-
mance of ‘ours w/o Belief State Encoder (BSE)’ ablation
decreases because the temporal information in the memory
is essential for the robot to fully understand the environment
and overcome the problem of partial observation.

4. Conclusion
We propose a transformer-based reinforcement learning

to tackle the interactive visual navigation task. With a



transformer encoder, the robot can capture the long spatio-
temporal information from the memory to decide whether
to push the obstacles or not. The length of the memory is
crucial as the longer memory contains more details while
shorter memory can ensure the faster convergence of the
transformer encoder. Furthermore, the proposed methods
can also be generally applicable to point navigation, object
navigation, or even vision language navigation.
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