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Figure 1. An example of IFOR being applied to real data. The initial and goal scenes are shown on the left. Our approach allows the
robot to repeatedly identify transformations that will minimize the flow for various objects between the current and goal scenes. It can then
repeatedly grasp, move, and place objects, rotating as necessary, in order to achieve the configuration in the goal scene.

Abstract
Accurate object rearrangement from vision is a crucial

problem for a wide variety of real-world robotics applica-
tions in unstructured environments. We propose IFOR, It-
erative Flow Minimization for Robotic Object Rearrange-
ment, an end-to-end method for the challenging problem of
object rearrangement for unknown objects given an RGBD
image of the original and final scenes. First, we learn
an optical flow model based on RAFT to estimate the rel-
ative transformation of the objects purely from synthetic
data. This flow is then used in an iterative minimization
algorithm to achieve accurate positioning of previously un-
seen objects. Crucially, we show that our method applies
to cluttered scenes, and in the real world, while training
only on synthetic data. Videos are available at https:
//imankgoyal.github.io/ifor.html.

1. Introduction
Object rearrangement is the capability of an embodied

agent to physically re-configure the objects in a scene into a
desired goal configuration [1]. It is an essential skill in day-
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to-day activities like setting a dining table, putting away
groceries, and organizing a desk.

With varying task setups, the desired goal state can
be provided in different forms, for instance, a compact
state representation [7, 14] or natural language descrip-
tions [9, 11]. In this work, we address the rearrangement
task where the goal state is specified by an RGB-D im-
age [8,10], as shown in Fig. 1. This setup lends itself well to
many scenarios where the goal state can be snapped once,
either in the first place or from a one-time demonstration.

Traditionally, object rearrangement problems have been
studied in the robotics community, often in the context of
Task and Motion Planning (TAMP) [4]. Despite much re-
cent progress [3,5,6], most TAMP approaches still rely on a
strict set of assumptions on the perception front. Recent ef-
forts in robotics have attempted to relax these constraints by
leveraging the power of deep learning. A recent approach
called NeRP, proposed by Qureshi et al. [10], has allowed
for rearranging objects unseen at the training time, by rep-
resenting the observed objects with learned embeddings. It
also removes the need of explicit object pose estimation for
planning by leveraging recent progress on learning-based
grasp planners [12] and collision detectors [2]. However,
NeRP only allows moving objects with 2D in-plane transla-
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Figure 2. Overview of the IFOR algorithm. IFOR takes as input RGB+D images of a current and a goal scene, and uses these to make
predictions as to which objects should move and by which transformations, using RAFT to estimate optical flow. This is then sent to a robot
planning and execution pipeline which is capable of grasping of unknown objects and motion planning in scenes with unknown geometry.

tions on the table surface and allows no change in their ori-
entation. This prevents its applications in realistic scenarios
that require moving objects with more complex transforma-
tions such as those shown in Fig. 1.

We propose a new approach to image-guided robotic ob-
ject rearrangement with RGB-D input. It achieves, for the
first time to the best our of knowledge, the ability to han-
dle unknown objects with translation as well as planar ro-
tations. The key to our method is re-formulating object
rearrangement as an iterative minimization of optical flow
between the current observed image and the goal image.
By using optical flow as an intermediate representation, we
can capitalize on the cutting edge development in flow es-
timation models [13]. Using this estimated flow, together
with the depth input and generic object segmentation mod-
els [15], we can obtain dense 3D correspondences for each
object. This provides a general representation that allows
us to solve for the desired transformation of objects with
simple optimization. Furthermore, with such a general rep-
resentation, our method trained entirely on synthetic data
transfers well to the real world in a zero shot manner.

2. Method
IFOR takes as input the RGB-D images of the current

and the goal scene, and iteratively generates a pick-and-
place action for one object at a time. At each iteration, the
RGB-D image of current and goal scene is passed through
two components: (1) perception and (2) planning (Fig. 2).
The perception component is responsible for estimating the
relative transformation of all objects between the current
and goal scene. Given the estimated transforms, the plan-
ning component selects an object to be moved along with
the required transformation, by taking into account colli-
sion and kinematic feasibility. Finally, after executing the
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Figure 3. User scores for IFOR vs. NeRP [10]. When asked to rate
performance of the two methods on a scale of 1-4, users preferred
IFOR by a wide margin. Users chose IFOR over NeRP in almost
all situations, when looking at either position only (94%) or full
pose (position and orientation, 92%).

planned pick-and-place action, the system will take a new
observation of the scene and repeat the process.

3. Experiments

We evaluated on 6 scenes, where each scene has between
2 to 5 objects in the initial configuration and a distinct goal
configuration. In order to quantitatively evaluate the per-
formance of the methods in the real world, we conducted a
user study with 10 users, where we asked users to select the
method that performed better: IFOR or NeRP [10]. We also
asked users to rate IFOR and NeRP on a scale of 1-4, where
1 is “very bad“ and 4 is “very good“.

All the components of the pick-and-place system were
the same for both IFOR and NeRP, except the estimation of
the objects’ final pose. Since NeRP does not handle chang-
ing the orientation, we asked users to rank the two methods
only based on translation as well as considering both rota-
tion and translation. Fig. 3 shows that users significantly
prefer IFOR over NeRP on both the settings.
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