Simple and Effective Synthesis of Indoor 3D Scenes

Jing Yu Koh1,∗ Harsh Agrawal2,†,∗ Dhruv Batra2 Richard Tucker1 Austin Waters1
Honglak Lee3 Yinfei Yang4,† Jason Baldridge1 Peter Anderson1
1Google Research 2Georgia Tech 3University of Michigan 4Apple

Abstract

We study the problem of synthesizing immersive 3D indoor scenes from one or more images. Our aim is to generate high-resolution images and videos from novel viewpoints, including those that extrapolate far beyond the input images while maintaining 3D consistency. Existing approaches are highly complex, with many separately trained stages and components. We propose a simple alternative: an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images. On the Matterport3D and RealEstate10K datasets, our approach significantly outperforms prior work when evaluated by humans, as well as on FID scores. Further, we show that our model is useful for generative data augmentation. A vision-and-language navigation (VLN) agent trained with trajectories spatially-perturbed by our model improves success rate by up to 1.5% over a state of the art model on the R2R benchmark. For more details, we refer readers to our full paper (https://arxiv.org/abs/2204.02960) and video results (https://youtu.be/lhwwlrRfFp0).

1. Introduction

We study the problem of synthesizing immersive 3D indoor scenes from one or more context images captured along a trajectory. Our aim is to generate high-resolution images and videos from novel viewpoints, including viewpoints that extrapolate far beyond the context image(s), while maintaining the 3D consistency of the scene. Solving this problem would make photos and videos interactive and immersive, with applications not only to content creation but also robotics and embodied AI. For example, models that can predict around corners could be used by navigation agents as world models [7] for model-based planning in novel environments [5,10]. Such models could also be used to train agents in interactive environments synthesized from static images and videos.

Previous approaches attempting this under large viewpoint changes [10,15,18] typically operate on point clouds, which are accumulated from the available context images. The use of point clouds naturally incorporates camera projective geometry into the model and helps maintain the 3D consistency of the scene [12]. To generate novel views, these approaches reproject the point-cloud relative to the target camera pose into an RGB-D guidance image. These guidance images are extremely sparse because of missing context and completing them requires extensive inpainting and outpainting. In prior work, Pathdreamer [10] achieves this by assuming the availability of semantic segmentations, and combining a stochastic depth and semantic segmentation (structure) generator with an RGB image generator. On the other hand, PixelSynth [15] creates guidance images using a differentiable point cloud renderer, generates a support set of additional views using PixelCNN++ [16] operating on the latent space of a VQ-VAE [14], combines and refines these images using a GAN [6] similar to SynSin [18].

Approach & Results

We propose a simple alternative: an image-to-image GAN that maps directly from guidance images to high-resolution photorealistic RGB-D (see Fig. 1). Compared to Pathdreamer, our simple model forgoes the stochastic structure generator, spatially adaptive
normalization layers, dependence on semantic segmentations, and multi-step training. By dropping the dependence of semantic segmentation inputs, we unlock training on a much broader range of data, such as commonly available RGB-D datasets [11, 13, 19], and video data such as the RealEstate10K dataset [21]. We eschew many components of PixelSynth: differentiable rendering, support set generation using PixelCNN++ and a VQ-VAE, and the multiple sampling and re-ranking procedure. Perhaps surprisingly, with random masking of the guidance images during training, plus other architectural changes supported by thorough ablation studies, our lightweight approach outperforms prior work. In human evaluations of image quality, our model is preferred to Pathdreamer in 60% of comparisons and preferred to PixelSynth in 77%. Our FID scores on 360° panoramic images from Matterport3D [3] improve over Pathdreamer’s by 27.9% relatively (from 27.2 to 19.6) on single step viewpoint predictions (an average of 2.2m), and from 65.8 to 58.0 when predicting over longer trajectories of up to 6 novel viewpoints. On RealEstate10K [21] – a collection of real estate video walkthroughs – our FID scores outperform PixelSynth, improving from 25.5 to 23.5 (and 23.6 to 21.5 for indoor images).

VLN Results Motivated by these strong results on image generation, we investigate the usefulness of our model for data augmentation in embodied AI. For this purpose, we focus on the task of vision-and-language navigation (VLN) using the Room-to-Room (R2R) dataset [1], which requires an agent to follow natural language navigation instructions in previously unseen photorealistic environments. Training data for the task consists of instruction-trajectory demonstrations, where each trajectory is defined by a sequence of high-resolution 360° panoramas from the Matterport3D dataset. Inspired by trajectory augmentations with camera hardware for self-driving cars [2, 4], we hypothesize that spatially perturbing the location of the captured images could reduce overfitting to the incidental details of these trajectories, and improve generalization to unseen environments. We first create an improved baseline by upgrading the VLN⊙BERT agent [8] to use much stronger MURAL [9] image features (+5% success rate). We then implement synthetic trajectory augmentation by using our model to spatially perturb the location of the training panoramas by up to 1.5m while training the agent. This augmentation improves the agent’s success rate in unseen environments by an additional 1% on its own, or 1.5% when combined with renders of spatially-perturbed images from the Habitat [17] simulator – achieving state-of-the-art performance on the R2R test set (success rate of 66%). In contrast, traditional image data augmentation techniques such as cropping, color distortion and blurring do not yield improvements.

We refer readers to our full paper¹ for further details and results. Our code will be released to facilitate future work on data augmentation and embodied AI.

¹https://arxiv.org/abs/2204.02960
References

