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Abstract

We study the automatic generation of navigation instruc-
tions from 360° images captured on indoor routes. Exist-
ing generators suffer from poor visual grounding, causing
them to rely on language priors and hallucinate objects.
Our MARKY-MTS5 system addresses this by focusing on
visual landmarks; it comprises a first stage landmark de-
tector and a second stage generator—a multimodal, multi-
lingual, multitask encoder-decoder. To train it, we boot-
strap grounded landmark annotations on top of the Room-
across-Room (RxR) dataset. Using text parsers, weak su-
pervision from RxR’s pose traces, and a multilingual image-
text encoder trained on 1.8b images, we identify 971k En-
glish, Hindi, and Telugu landmark descriptions and ground
them to specific regions in panoramas. On Room-to-Room,
human wayfinders obtain success rates (SR) of 71% fol-
lowing MARKY-MT5’s instructions, just shy of their 75%
SR following human instructions—and well above SRs
with other generators. Evaluations on RxR’s longer, di-
verse paths obtain 61-64% SRs on three languages. Gen-
erating such high-quality navigation instructions in novel
environments is a step towards conversational navigation
tools and could facilitate larger-scale training of instruction-
following agents. The full paper at CVPR 2022 is available
athttps://arxiv.org/abs/2111.12872.

Introduction

First of all, we make progress towards the desired capabil-
ity of generating instructions directly from visual input.
This allows for much stronger generalizability: Instruction
generators for indoor wayfinding assume the access to pre-
existing floorplans and landmark databases [1 1], but recent
work attempts to generate novel instructions directly from
visual inputs [0, 10, 13]. Progress toward this goal will en-
able navigation aids that are conversational rather than map-
based—and it could provide a virtually unlimited supply of
high-quality synthetic navigation instructions for training
instruction-following robots. Describing navigation paths
is also a key capability for human-robot communication,
equipping robots to answer questions such as where did you
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Generated Instruction:

You are facing towards the commode. Turn right and exit the washroom. Turn
right and walk straight till you reach the white cabinet in the front. There is an
arch in the front. Enter inside the arch. Turn right and walk towards the sofa.
Turn left and walk straight till you reach the arch in the front. There is a round
table with four chairs towards your left side. You have reached your point.

Figure 1. We generate grounded navigation instructions from a
sequence of 360° images captured along a route in a previously
unseen building. Our two-stage approach first detects landmarks
and then generates instructions conditioned on these landmarks.

go? or where should I meet you?.

We seek to generate accurate and fluent navigation
instructions—in multiple languages—directly from visual
representations and actions taken to traverse a path. Pre-
vious work assumed that the input to the instruction gen-
erator is a sequence of 360° panoramic (henceforth, pano)
images captured at intervals on a path, typically training on
instructions from Room-to-Room (R2R) [1] using Matter-
port3D environments [2]. These models’ instructions have
proven valuable as additional training data for vision-and-
language navigation (VLN) agents [6]. However, people
struggle to follow them [16]: human wayfinding success
rates on R2R are 36% for Speaker-Follower [6] and 42%
for EnvDrop [13] in unseen environments. The generated
text is stylistically correct, but frequently references non-
existent objects and confuses spatial terms such as left/right.

Secondly, we identify and filter for relevant visual
grounding from visual inputs. A challenge for visually-



Visual Search %

Model Landmarks Training Data WC NE | SR71 SPL1 Quality T Start| Other | Time (s)|
1 SpkFol [6] Full Panos R2R 246 60 420 358 4.1 39.8 23.6 542
= 2 EnvDrop [13] Full Panos R2R 245 6.0 417 353 4.0 40.7 235 54.0
& 3 SpkFol-RxR [6] Full Panos RxR 61.8 39 578 487 4.2 36.0 23.7 67.5
ﬁ 4 Marky-mT5 Outbound RxR 575 3.6 649 54.1 4.2 36.2 23.8 72.5
& 5 Marky-mT5 Predicted RxR 582 29 708 59.8 4.3 35.5 23.2 70.1
6 Human - - 256 28 749 664 4.5 37.8 23.0 522

Table 1. R2R Val-Unseen human wayfinding performance (N = 783 for each model). Combining the larger RxR dataset with landmark
modeling and our bootstrapped landmark dataset, we almost eliminate the gap between model-generated and human-written instructions on
paths of R2R-level difficulty — achieving a 70.8% success rate vs. 74.9% for human instructions and 42% for previous models. (outbound:
outbound: defined as the view from the current pano in the direction of the next pano)

oriented instruction generators is dealing with irrelevant vi-
sual inputs. In many other image-to-text generation tasks
(e.g., image captioning), much of the visual information in
the input is reflected in the output text. This is not the case
when generating navigation instructions. Human annotators
look at less than 30% of the environment [9], and the in-
structions reference only a fraction of the objects that they
look at. This makes learning a precise mapping between
visual inputs and text outputs much harder. Perversely, ac-
cess to more information can degrade performance [5], as
models happily learn spurious correlations that cause hal-
lucinations during inference. To solve this, we exploit the
spatiotemporal grounding in the Room-across-Room (RxR)
dataset [9]. Instead of writing instructions, RxR annota-
tors spoke while traversing paths. Every RxR instruction
thus comes with pose traces that align the words spoken
(and later transcribed) with what annotators were looking
at. We use these pose traces and instructions to derive a
new silver annotated dataset' that contains bounding boxes
over visual landmarks combined with their multilingual de-
scriptions (English, Hindi, and Telugu). Specifically, we
bootstrap landmark annotations using text parsers to iden-
tify landmark phrases in instructions. We then use powerful
image-text co-embedding models [8] combined with weak
supervision from pose traces to ground those landmarks in
the environment.

Modeling & Evaluation

Our two-stage MARKY-MTS5 (landmark and multilingual
TS [15]) system enhances instruction generation by im-
proving how visual landmarks are selected and mentioned.
Given a path-connected sequence of panoramic views, the
first stage landmark detector (trained on the data automat-
ically bootstrapped from human annotations which informs
how humans select landmarks, i.e. silver landmarks) infers
a sequence of landmarks (i.e. predicted landmarks) that a
person might select for describing the path. E.g., in Fig. |

IThe term silver data refers to high-quality annotations—not created by
people—that are derived by combining models and constraints [7, 12, 14].

eight landmarks are selected, each represented by an image.
This sequence, plus interleaved descriptions of navigation
actions, is passed to the second stage instruction genera-
tor — a multimodal extension of the multilingual TS (mTS5)
model [ 15] similar to VL-TS [4] — to produce the instruction
in Fig. 1.

The quality of the generated instructions is evaluated
with a) large-scale human evaluation (with over 20k nav-
igation sessions) to gauge human followability; b) com-
paring MARKY-MTS generated instructions and human-
written ones for the same paths on SotA navigation agent.

Findings & Conclusion

First, landmarks matter. On R2R, MARKY-MT5 increases
success rate (57.8% — 70.8%) and SPL (48.7% — 59.8%),
and lowers navigation error (3.9m — 2.9m) compared to
prior work without landmarks — represented by SpkFol-RxR
trained on the same dataset (Tab. 1, row 5 vs. 3). Further,
compared to human-written instructions, using a combi-
nation of RxR data, silver landmarks and modeling im-
provements, we almost eliminate the gap between model-
generated and human-written instructions on paths of R2R-
level difficulty — with a 71% success rate vs. 75% for human
instructions and 42% for previous models (Tab. 1). How-
ever, on the more challenging RxR-style paths, a gap re-
mains — human wayfinders obtain a 62% success rate using
MARKY-MTS vs. 78% for human instructions. MARKY-
MTS5 generated instructions are also indistinguishable from
human-written ones for a state-of-the-art VLN agent [3] —
we achieve near identical success rates (56.5% vs. 55.7%)
and NDTW (62.9% vs. 63.3%) for human and generated in-
structions. Finally, an appealing property of our two-stage
approach is that diverse instructions can be generated by
sampling landmark predictions.

Despite the accomplishments, the strength of our
approach—focusing on visual landmarks—is also a limita-
tion. MARKY-MTS5 is blind to other context when generat-
ing, making it susceptible to pragmatic failures, e.g. gener-
ating ‘Leave the room’ in a room with multiple exits. Ad-
dressing this could lead to further gains.
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