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1. Introduction

Recent progress in embodied AI [2, 5–7] pushes intelli-
gent robotic systems to reality closer than any other time
before. To achieve the final goal of interacting with un-
structured environments to accomplish various daily tasks,
the agent needs to learn how to manipulate objects through
visual observations and natural languages appropriately.
Compared with vision-only systems, natural language pos-
sesses two essential properties that enhance robot manipula-
tion task learning: compact and flexible specification of var-
ious tasks and natural interactive communication interface
with humans. We name such an agent that learns from the
combined knowledge of language and vision to accomplish
robot manipulation tasks a Vision-and-Language Manip-
ulation (VLM) embodied agent. Given the rapid growth in
VLM research and their limitations on generalization across
different tasks, we expect an inclusive, modular, and scal-
able benchmark to evaluate embodied agents for various
manipulation tasks.

Compared to recent benchmarks developed to evaluate
robotics manipulation tasks with language guidance and vi-
sual input [1, 3, 8], which lack (1) adaptation to novel ob-
jects automatically and (2) categorization for modular and
flexible composition to complex tasks, we present VLM-
bench, a highly categorical robotic manipulation bench-
mark that generates numerous task demonstrations, as
shown in Fig. 1. To generalize across the different object
and task settings, we propose AMSolver, an automatic unit
task builder that can generate various robot trajectories and
grasping poses to accomplish the desired action for a unit
task. Compared with previous works [3] that require the
user to design a new task from scratch, we propose unit task
templates that can generate a new task simply by specifying
object properties. For instance, the pick-place task can be
automatically generated for different objects provided their
geometric models, with free variation in the objects’ colors,
shapes, and sizes and 6 degrees of freedom (DoF) poses in
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Figure 1. Given the language instructions and observations, the
VLMbench requires the agent to generate an executable manipu-
lation trajectory for specific task goals. On the left, we show that
the complex tasks can be divided into the unit tasks according to
the constraints of the end-effector, like “Open the doof of the dish-
washer” and ”Open the door of the fridge” should both follow the
rotation constraints of the revolute joint. We show examples of
object-centric representations on the right, where all graspable ob-
jects or parts will generate local grasping poses as their attributes.
Depending on the modular design, we can generate reasonable
VLM data automatically.

the scene. The unit tasks can be composed together to cre-
ate complex multi-step tasks. Besides, VLMbench provides
both high-level language descriptions of the entire task and
low-level action descriptions that correspond to unit robot
moves.

2. AMSolver: Automatic Manipulation Solver

We consider three main categories of household manip-
ulation tasks: rearrangement (move an object from place to
place, e.g., collect trash into the bin), affordance usage (ex-
ploit particular usage of some object, e.g., pour water from a
mug), and multi-step tasks (can be decomposed into several
individual steps, e.g., connect every two pieces to assemble
a table from parts). To formulate a unified task representa-
tion, we assume that every task within these categories can

1



be considered a combination of objects and unit actions. To
describe the essential elements of tasks, we proposed Au-
tomatic Manipulation Solver (AMSolver), a rule-based au-
tomatic task builder consisting of object-centric representa-
tions and unit task templates, shown in Fig. 2.
Rule-based Unit Tasks We define a unit task as the seman-
tic step of completing a sub-goal of the entire task. Specif-
ically, a unit task is defined in a formula of ‘take action
on an object under certain constraints’ where a unit task
can be parameterized by two constraints: (a) position con-
straints and (b) orientation constraints, which describe
the valid spatial space or orientation range, respectively, of
the end-effector for a specific task. We propose three unit
task templates detailed below that can compose the afore-
mentioned complex tasks: Control is a preparation or end-
ing step of a task, which models the transition of the object
state, where the state indicates whether the robot can move
the object or not; M1 denotes moving the target object with
goal pose constraints (position and orientation constraints),
which can be modeled as a 6 DoF transform in the robot’s
workspace; M2 denotes moving the target object along a
trajectory while satisfying the motion constraints during the
entire path, which implies a more strict condition than M1.
Object-centric Representation Some recent works [4, 9]
have used object-centric representations for manipulation.
Since the properties are defined on objects, these repre-
sentations can easily cross the variations of environments,
agents, and tasks. Our benchmark assumes that objects used
in the tasks are rigid, and their fundamental properties will
not change during the tasks. Therefore, we can parameter-
ize the objects as a set of configurations, including class,
color, size, and geometry shape. If the object is articu-
lated, its whole configuration will contain the configuration
of each part and the physical constraint of each connection.

3. VLMbench: Visual-and-Language Manipu-
lation Benchmark

Given language instructions, the Vision-and-Language
Manipulation (VLM) task requires an embodied agent to
follow the instructions to complete tabletop manipulation
tasks. Formally, at the beginning of the task, the agent re-
ceives a set of language instructions L = {L1, L2, ..., Ln},
where Li denotes one sentence of arbitrary length. The
initial state s0 contains multi-view RGB images, depth im-
ages, segmentation information, and robot states, including
joint angles, velocities and torques, and end-effector pose.
Given the observations and language instructions, the agent
needs to estimate an executable action command a0, di-
rectly working on the end-effector or joints. Then, at each
step t, the agent receive new observations ot and generate
the action at = f(st|s0, s1, ..., st−1, L) for the next step.
The step loop will repeat until the agent sends a stop action
or should be terminated, e.g., achieve the success condi-
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Figure 2. The unit task templates in the AMSolver. On the left,
we show three main common task types of household tasks and
give several example tasks for each. On the right, we show three
unit task templates parameterized by position and orientation con-
straints over the robot end-effector on either goal pose or entire
path. By combining these unit task templates, various task exam-
ples can be generated.

tions or the limitation steps. The agent should obey the con-
straints provided by language instructions during the whole
running.

Tasks Generation The manipulated object’s properties can
randomly change for each task category, and every com-
bination leads to a task instance. In the VLMbench, we
use 8 different variations from object and motion perspec-
tives Object variations include colors, sizes, shapes, relative
positions, and directions. From the motion view, the vari-
ations are amounts and action types. The amounts mean
how far the task needs to be done, consisting of “fully” and
“slightly.” The action types include “open” and “close”, es-
pecially for the articulated objects.

Dataset Generation We collect the VLMbench dataset in
the environment of RLbench with AMSolver. There are five
RGB-D cameras in the environment: front view, left view,
right view, overhead view, and wrist view. We use the image
resolution of 224 × 224 in this dataset. The objects will
change the poses among different demonstrations.

For language instructions, we predefined some templates
for each task category to quickly generate various language
instructions by filling the object properties’ descriptions.
For example, the “Pick & Place objects” task has the tem-
plate “Pick [Object] and place it into [Container],” where
[Object] denotes the target object descriptions correspond-
ing to variations mentioned above. Meanwhile, by defin-
ing the structured language templates on the unit task, we
can simultaneously generate the low-level instructions in
the dataset, which structurally describe the basic actions
corresponding to the frames, e.g. “Move to [relative po-
sition] [manipulated object]; Grasp [manipulated object]”
correspond to the pre-grasp action and grasp action in the
Control unit task. We hope this information will be helpful
for further research in this area. In total, we have generated
3760 trajectories in 24 hours on a 64-core computer with 8
GPUs.
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