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Abstract

Outdoor Vision-and-Language Navigation (VLN) is a
challenging task that requires an agent to navigate using
real-world urban environment data and natural language
instructions. Current outdoor VLN models tend to overlook
crucial navigation roles, such as objects that serve as land-
marks for accurate turn and stop locations. This occurs be-
cause they primarily focus on panoramas and instructions,
while disregarding objects that provide essential informa-
tion for accurate decisions, such as identifying correct turn
and stop locations, which humans naturally use as land-
marks in unfamiliar places. In this paper, we propose the
Object-Attention VLN (OAVLN) model, inspired by human
navigation, which focuses on relevant on-the-route objects.
Our model outperforms previous methods across all evalu-
ation metrics on two benchmark datasets, Touchdown and
map2seq.

1. Introduction
Enabling a robot to navigate real-world environments

using natural language instructions has been a longstand-
ing goal in AI research. The vision-and-language naviga-
tion (VLN) field has proposed various ways to achieve this
[1, 4, 8, 18].

Recent outdoor VLN models [3, 4, 17, 19, 21] concate-
nate instruction and panoramic features and to predict a se-
quence of actions. However, these models lack the abil-
ity to learn specific semantics and ignore objects, tend to
learn data biases and have a poor understanding of the en-
vironment. In a preliminary experiment, we examined the
attention of existing methods on navigation texts by plot-
ting a heatmap of attention weights for instructions. We
discovered that outdoor VLN agents insufficiently focus on
object tokens, causing erroneous turns and stops. The aver-
age attention weight of object tokens from the test set was
only 0.128, highlighting the insufficient attention given to
object tokens compared to other components of the instruc-
tions. Furthermore, DiagnoseVLN [20] found that outdoor
VLN agents prefer to use directional information and ig-

nore objects from the instructions, which is counterintuitive
to humans who use landmarks like buildings and objects to
navigate unfamiliar places [2]. Therefore, landmarks like
buildings and objects are crucial for providing helpful clues
in outdoor VLN.

Inspired by using landmarks to navigate unfamiliar
places, we propose a simple yet effective Object-Attention
VLN (OAVLN) model that allows the agent to focus more
on objects described in the navigation instructions and bet-
ter understand the environment. Our method leverages
object information to enhance the agent’s environmental
awareness and improve navigation performance.

We extensively experimented with our OAVLN on the
Touchdown [4] and map2seq [16] dataset, and comparing
it with four outdoor VLN models [3, 4, 17, 21]. The ex-
perimental results demonstrate that our model outperforms
existing methods by effectively utilizing objects as naviga-
tion landmarks and accurately guiding the agent to turn or
stop at suitable locations.

2. Proposed Method: OAVLN
The proposed Object Attention VLN (OAVLN) model,

as shown in Fig. 1, takes in four inputs: navigation instruc-
tions, panorama features, object features, and scene texts.
At each decoding timestep, the model computes a panorama
visual representation of the current agent state in the envi-
ronment based on previously predicted actions. The first
layer encodes metadata and visual representations, while
the second layer encodes contextualized text to predict the
next action.

The Object Attention VLN model consists of four en-
coders. The Instruction Encoder embeds and encodes nav-
igation instructions using a bidirectional LSTM [5]. The
Panorama and Object Encoders extract visual features from
panoramas and objects, while the Scene Text Filter and En-
coder handle scene text detection and recognition. To ob-
tain higher-quality scene text from low-quality panorama
images, we use the Object Encoder to detect the entire
panorama and identify the ‘sign’ regions. Then, we apply
scene text recognition only to these ‘sign’ regions using the
MMOCR [9] model and the SAR [10] model for text recog-
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Figure 1. Overview of the proposed model.

Table 1. Navigation results on Touchdown and map2seq for the seen scenario.

Dataset Touchdown map2seq
Model TC↑ SPD↓ SED↑ CLS↑ nDTW↑ sDTW↑ TC↑ SPD↓ SED↑ CLS↑ nDTW↑ sDTW↑

RCONCAT 8.94 22.48 8.55 43.23 18.20 7.98 14.62 20.61 14.30 54.18 27.43 13.76
GA 9.87 20.34 9.42 47.77 21.51 8.92 17.88 18.25 17.55 58.56 31.46 17.08
VLN Transformer 14.90 21.20 14.60 45.40 25.30 14.00 17.00 - - - 29.50 -
ORAR 24.23 17.30 23.70 56.87 37.20 22.87 43.96 6.93 43.09 82.97 60.43 41.78
Ours (+scene text) 24.77 15.98 24.14 59.93 37.64 23.14 50.00 6.11 49.04 84.77 65.39 47.45
Ours (+objects) 25.90 16.04 25.40 60.84 39.00 24.47 49.00 6.40 48.08 84.28 63.38 46.75

nition. Finally, the Decoder predicts the agent’s next action
using multi-head attention and LSTM layers.

3. Experiments
We conduct experiments on Touchdown [4] and

map2seq [16] datasets to assess OAVLN’s performance on
the outdoor VLN task.

3.1. Experimental Setup
Our framework, implemented in PyTorch [13], uses

ResNet50 [6] for panorama features extraction and Faster
R-CNN [15], pretrained on Visual Genome datasets [11],
for object features extraction. MMOCR [9] recognizes text
on signboards, and then we used stanza [14] to summarize
the object tokens in the instructions, and to optimize the re-
sults of scene text recognition.

We compare our model with RCONCAT [4], GA [3],
VLN-Transformer [21], and ORAR [17] on outdoor VLN.
These baseline models were selected because they rep-
resent widely-accepted or state-of-the-art methods in the
field. Our goal is to demonstrate how our proposed method,
which focuses on on-the-route object features, can improve
upon these existing models by addressing their limitations
and achieving better performance in the outdoor VLN task.

The VLN performance was evaluated using six metrics:
Task Completion (TC), Shortest-Path Distance (SPD) [4],
Success weighted by Edit Distance (SED), Coverage
weighted by Length Score (CLS) [7], Normalized Dynamic
Time Warping (nDTW) [12], and Success-weighted Dy-
namic Time Warping (SDTW).

3.2. Experimental Results
We evaluated the impact of object features and scene text

in our OAVLN model. Tab. 1 shows a comparison of our
model with other studies. Our model outperforms baselines
in each metric, highlighting the effectiveness of different
datasets. The OAVLN(+scene text) and OAVLN(+objects)
share the same structure but differ in the input information.
Our model shows significant improvements in path align-
ment metrics (CLS, sDTW), indicating the effectiveness of
object feature attention. The OAVLN(+scene text) model
achieves a 6% improvement in goal-oriented metrics (TC,
SED) on the map2seq dataset, indicating better object to-
ken utilization. The Touchdown boost was insignificant be-
cause the map2seq instructions were more focused on the
objects. Our results demonstrate that using objects as ref-
erences significantly improves the ability of our model to
navigate effectively (turning and stopping) toward the goal,
thereby enhancing its accuracy.

4. Conclusion
Our OAVLN leverages on-the-route objects to improve

turning and stopping accuracy. This approach is more intu-
itive and allows the agent to use surrounding objects as ref-
erences to reach the goal, even in unfamiliar places. More-
over, our work highlights the importance of leveraging con-
textual information, such as scene text, in navigation tasks.
Our approach could serve as a starting point for future re-
search in this area and inspire the development of more ad-
vanced models that better use the contextual information
available in real-world environments.
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