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Abstract

Learning how to navigate among humans in an occluded
and spatially constrained indoor environment, is a key abil-
ity required to embodied agent to be integrated into our so-
ciety. In this paper, we propose an end-to-end architecture
that exploits Proximity-Aware Tasks (referred as to Risk and
Proximity Compass) to inject into a reinforcement learning
navigation policy the ability to infer common-sense social
behaviors. To this end, our tasks exploit the notion of imme-
diate and future dangers of collision. We validate our ap-
proach on Gibson4+ and Habitat-Matterport3D datasets.

1. Introduction
Navigating safely in a dynamic scenario populated by

humans who are moving in the same environment is nec-
essary for embodied agents such as home assistants robots.
To do so, as depicted in Figure 1, the agent should be able
to dynamically and interactively navigate the environment
by avoiding static objects and moving persons.

In Embodied AI, common tasks such as PointGoal [4,
9, 12] or ObjectGoal [1, 2, 7] navigation, frame navigation
in a fundamentally static environment. The dynamic ele-
ment introduced by sentient, moving human beings in the
scene forces us to rethink how the current models are de-
signed. A good navigation policy must not be just effec-
tive (i.e., able to achieve its goal) and efficient (i.e., able to
achieve the objective through a close-to-optimal path) but
also safe (doing so without harming others). This social
element is included in the Social Navigation Task (Social-
Nav) [6, 10], where an agent must tackle PointGoal Nav-
igation in simulated indoor environments. To tackle this
task, Yokoyama et al. [13] introduced a simple but quite ef-
fective model. However, the approach does not explicitly
encode any social behavior in its navigation policy. We be-
lieve that a clear encoding of human-agent interactions, as
well as social behaviors, are required for safe navigation
and interaction with humans. By modeling the movement
of humans, the agent could prevent collisions or dangerous
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Figure 1. Example episode. From top-left to bottom-right: i)
episode starts; ii) the agent sees a person; iii) it moves back to
avoid a collision; iv) it reaches the goal by avoiding the person.

behaviors and adapt its path to the dynamic environment in
which it is navigating. We encode these “signals” by in-
troducing two Proximity-Aware Tasks, referred as risk and
proximity compass. These auxiliary tasks model the present
and future danger for the agent’s action. Finally, we also
introduce a dataset of episodes on top of HM3D [8] for Em-
bodied Social Navigation to assess our agents in different
environments.

2. Method and Experiments
Overview. Our framework comprises two modules: (i)
Proximity feature extraction, and (ii) Policy architecture.
The Proximity feature extraction module refines proximity
information to extract features of social interactions (ground
truth proximity features). The Policy architecture extracts
from the RGB-D and GPS+Compass sensors an embedding
that is given as input to our Proximity-Aware tasks. These
tasks refine this embedding to n task embeddings (one per
task) which are then fused through state attention. An action
is sampled from the output.

Policy Architecture Our network comprises the following
modules: i) two encoders that create an embedding from in-
put sensors; ii) a Recurrent State Encoder that accumulates
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Name Sensors Aux Tasks Proximity Tasks Metrics (Gibson4+) Metrics (HM3D-S)
RGB Depth CPCA GID CPCA/B Risk Compass Success SPL H-Collisions Success SPL H-Collisions

Baseline [13] ✓ 72.65±1.6 47.43±1.2 24.35±1.9 62.76±2.2 36.69±1.1 29.29±2.2

Baseline + RGB [13] ✓ ✓ 74.28±1.8 44.84±0.7 23.78±1.3 61.43±0.5 34.84±0.6 29.23 ± 0.7

Aux tasks [12] ✓ ✓ ✓ ✓ ✓ 73.4±2.0 52.08±1.4 23.40±1.5 63.62±1.6 42.27±1.2 24.79±2.2

Risk only ✓ ✓ ✓ 74.90±1.7 50.25±1.1 22.56±1.2 66.22±1.2 45.26±0.8 24.47±1.7

Compass only ✓ ✓ ✓ 75.08±1.5 50.55±1.0 22.49±1.1 67.32±1.7 45.74±1.0 23.54±1.7

Aux + risk ✓ ✓ ✓ ✓ ✓ ✓ 75.61±1.8 51.43±0.2 21.04±1.4 68.16±0.8 45.64±0.2 22.00±1.6

Aux + compass ✓ ✓ ✓ ✓ ✓ ✓ 75.63±1.2 52.60±1.6 23.17±1.2 67.94±1.4 45.76±1.0 23.78±2.0

Proximity tasks ✓ ✓ ✓ ✓ 76.6±1.8 52.81±1.2 20.47±0.4 68.35±0.5 45.83±0.5 21.72±1.2

Proximity + Aux tasks ✓ ✓ ✓ ✓ ✓ ✓ ✓ 77.24±1.1 55.23±1.4 19.50±1.0 70.16±1.1 47.60±1.0 22.09±1.3

Table 1. Social Navigation evaluation. For each model are listed used Sensors and type of self-supervised Aux tasks or Proximity tasks.

such embedding through a series of recurrent units; iii) a
State Attention module that fuses the outputs.

We encode each RGB-D frame xt using a CNN f(·) to
a visual embedding ϕv

t = f(xt). The position and rotation
of the agent αt are encoded using a linear layer g(·) to ob-
tain the embedding ϕp

t = g(αt). The final embedding is
ϕf
t = ϕv

t ⊕ ϕp
t . To accumulate embeddings over time, we

follow [12]’s design for PointNav and implement our state
encoder as a stack of parallel recurrent units. Each unit at
each timestep is fed ϕf

t , and outputs its internal state, called
belief.

The key idea is that each recurrent unit can focus on a
specific navigation aspect and each belief is weighted ac-
cording to the situation. The State Attention module com-
putes the mean µ⃗t and standard deviation σ⃗t of the normal
distribution from which we sample the action at. Formally,
given {RU (i)}∀i∈B a set of recurrent units, the encoded be-
liefs ht are defined as:

ht := {h(i)
t }∀i∈B ← {RU (i)(h

(i)
t−1;ϕ

f
t )}∀i∈B

The fusion mechanism of the state attention module is:

µ⃗t, σ⃗t ← FCa(Attention(ht, FCk(ϕ
f
t ), ht))

with attention function Attention(Q,K, V ) and FCa and
FCk are linear layers.

Proximity-Aware Tasks With multiple beliefs, we can in-
ject different signals in our embeddings like information re-
lated to social dynamics. To this end, we condition each
belief with a unique auxiliary loss. Each belief is processed
with a specific type of Proximity feature, through a Regres-
sor network, that computes our Proximity-Aware tasks pre-
dictions. Each regressor predicts the proximity features in
the time range [t, t + k], conditioned by the corresponding
belief h(i)

t and the sequence of actions {aj}j∈[t,t+k]. Each
task minimizes the MSE loss between such predictions and
ground truth proximity features. The proximity features are
only used in training and detached during evaluation.

We designed two proximity tasks and two social fea-
tures: (i) Risk Estimation, and (ii) Proximity Compass. Also
general purpose self-supervised tasks like the ones used
in [12] (e.g., CPC|A [3] or ID [5, 11]) can be combined.

Risk Estimation Task. Risk Estimation deals with short-
range social interactions, to inform the agent about immi-
nent collision dangers. We define the Risk value as a scalar
representing how close the agent and the nearest person are
up to a maximum distance Dr. This value ranges from 0
(the nearest neighbor is further than Dr meters away) to 1
(the agent and person are colliding).

Proximity Compass Task. Proximity Compass models the
long-distance component of social dynamics. This fea-
ture captures social interaction on a larger area with radius
Dc > Dr and also a weak indication of the direction a per-
son may come. Such information is represented through a
Proximity Compass. In the compass, north represents the di-
rection the agent is looking, and the quadrant is partitioned
into 8 sectors. We compute the risk value among people be-
longing to the same sector, for each sector. Baseline mod-
els. We compared our approach to two baselines: the model
presented in [13] (referred as to Baseline) and a “simplified”
version of our model that only uses 3 self-supervised aux-
iliary tasks (inspired by [12]): 2 CPC|A tasks (respectively
using 2 and 4 steps) and GID (4 steps), referred to as Aux
tasks.
Performance analysis and comparison to prior work.
Table 1 reports the social navigation performance (on the
test set) on different auxiliary task combinations. In both
cases, Aux tasks appears as the strongest baseline (high-
est SPL and lowest Human-Collision), reaching compara-
ble performances to single proximity task models but with
a higher SPL.

Moreover, we notice that both models that use just
one Proximity-aware task perform similarly on Gibson4+
(sub 0.5% of difference between metrics). However, this
changes on HM3D-S, where Compass-only slightly out-
performs Risk-only (+1.1% Success, -0.93% h-collisions).
This difference is expected since the proximity com-
pass task deals with long-range proximity information and
HM3D scenes are larger in size.

Adding self-supervised tasks significantly increases SPL
and Success performances. It also appears to positively af-
fect Human Collision when combined with Risk (-1.52%
in Gibson4+, -2.47% in HM3D-S). Overall, the best results
are obtained by combining all tasks.
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