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Abstract

Recent significant advancements in computer vision
(CV) and natural language processing (NLP) have show-
cased the vital importance of leveraging prior knowledge
obtained from extensive data for a generalist agent. How-
ever, there are limited explorations in utilizing internet-
scale data to train embodied generalist agents. In this work,
we propose a hypothetical framework that integrates the
prior knowledge from foundation models into each compo-
nent of the actor-critic algorithms for the generalist agents.

1. Introduction

Recently, the fields of Natural Language Processing
(NLP) [3,5,21,27] and Computer Vision (CV) [7,15,22,23]
have witnessed significant progress, primarily attributable
to the ability to consume extensive datasets in Deep Learn-
ing (DL). Specifically, GPT models [3, 21] are built upon a
large pre-trained corpus consisting of billions of texts from
the internet, while Segment Anything [15] employs massive
amounts of hand-labeled segmentation data. These large-
scale models have demonstrated superior capabilities, in-
cluding strong precision and generalization, by leveraging
prior knowledge from substantial data [3, 23, 26]. How-
ever, for embodied AI, there are few works to introduce
such prior knowledge to learn a generalist agent. For hu-
man beings, prior knowledge is fundamental as it facilitates
the swift acquisition of new skills. For example, a child
who has never witnessed the act of opening a door may fail
to turn the doorknob. But one who has can quickly make
it because he/she has got the prior that the doorknob can be
rotated. Such prior knowledge acquired through observa-
tions and experiences can enable humans to rapidly adapt
to diverse daily tasks, including opening a door, pick-and-
placing, and so on. So initiating with reasonable priors and
attaining generalization is significant, especially in unex-
pected scenarios. Therefore, data plays a critical role in de-

veloping generalist embodied agents by its prior knowledge.
In light of this, we examine three principal data sources

in embodied AI and the prior knowledge they offer.
The first is simulated data, which relies on simulators re-

sembling real-world scenarios. With this approach, through
interacting with the environments, the agent can gather prior
knowledge of the physics and geometry of the environ-
ments, including force and depth feedback [12,16]. And the
agent can take the successfully learned policies in simula-
tion as the prior knowledge of solving different tasks. When
the domain gap between simulation and real world is min-
imal, such prior knowledge can facilitate rapid adaptation
to real-world scenarios. However, it is almost impossible
to simulate the whole physical world. Consequently, it is
unlikely to develop a generalist agent through the simulated
environmental data.

The second data source is self-embodiment, which can
provide exact experiences of interactions between the cur-
rent embodiment and the environment. Such data allow the
agent to learn more quickly in current scenarios compared
with learning from other types of data [1, 2]. However, the
efficiency of collecting self-embodied data is limited when
the agent policy cannot be deployed in a large scale. And
the successful applications in NLP and CV emphasize the
importance of scalable data for model learning. Therefore,
this type of data cannot serve as the primary source of prior
knowledge due to the limited scalability.

The third source of data is the internet-scale data from
other embodiments. It has greater scalability and is more
accessible. The large-scale data from the internet can pro-
vide abundant prior knowledge to accomplish various tasks,
including visual semantic information, decision logic, and
physical changes in environmental interactions [15, 21].
Learning from these data for embodied agents is akin to hu-
mans observing the behaviors of others and imagining how
to complete daily tasks. Therefore, it is significant to apply
the prior knowledge from the internet-scale data to learn
policies for embodiments, which is the target of this work.

We propose a novel framework for embodied generalist
agents from internet-scale data with foundation model as-



sistance. Since the data are from different embodiments, the
foundation models can provide noisy value, policy and task-
success reward functions. And a systematic learning pro-
cess is necessary as it is unlikely to succeed in one trial due
to the noise in priors, which can be solved by RL. Notably,
policy gradient algorithms, such as SAC [10] or PPO [25],
are widely recognized as effective methods for solving RL
problems. Therefore, we propose to assist the actor-critic
learning with the foundation model priors to learn embod-
ied generalist agents efficiently. Specifically, the value and
reward priors from the foundation models can estimate the
states so as to provide advantages in actor-critic learning.
And the policy prior can provide general strategies for solv-
ing tasks to guide the agent, which prevents amounts of
random explorations. In this paper, we demonstrate how
to obtain and utilize the priors from foundation models for
actor-critic learning for embodied generalist agents.

2. Method
2.1. Problem Formulation

This work facilitates online policy learning with robotics
embodiment across various scenarios. In reinforcement
learning (RL), tasks are usually modeled as Markov deci-
sion processes (MDPs). To handle different tasks with one
agent, Goal-conditioned RL (GCRL) settings have emerged
as a more promising alternative compared to vanilla MDPs,
which augment an additional goal for tasks. In this pa-
per, we use language as the goal for the sake of its strong
representational and generalization abilities. For better de-
scriptions, we define the Goal-conditioned MDP (GCMDP)
as a tuple G = (S,A,P,R|T , T ). S ∈ Rm denotes the
current state, A denotes the action space of the agent, and
P = Pr{st+1|st, at} denotes the transition probabilities. T
is the task identifier, which is instantiated by language in
this work. R|T denotes the rewards conditioned by tasks.

2.2. Actor-Critic Learning by Foundation Priors

The actor-critic algorithm, a temporal difference (TD)
version of policy gradient algorithms, comprises a policy
model π and a value model V . Our basic idea is to provide
appropriate priors to each module of the actor-critic algo-
rithm through foundation model assistance.

Regarding the critic, we propose to approximate values
and rewards based on a value foundation model MV(s|T ) :
S × T → R, and a reward foundation model MR(s|T ) :
S × T → {0, 1}. Here the model MV(s|T ) estimates the
values of states, and dense rewards of each transition can be
derived from it. However, due to the inherent noise in the
value prior, an additional signal is required to improve the
accuracy of the estimates. To address this, we introduce the
reward model MR(s|T ), which acts as a success discrimi-
nator, providing a task completion signal for the final state.

Such reward models offer greater precision and can be eas-
ily acquired. In this way, we are able to infer the advantages
of transitions based on the value and reward priors.

Regarding the actor, our approach focuses on enhanc-
ing policy learning by leveraging the advantages derived
from the value and reward priors, as well as incorporat-
ing the guidance provided by policy priors. Without pol-
icy priors, the agent would need to rely on extensive trial
and error during policy gradient learning to perform well
from random behaviors. However, humans possess a gen-
eral strategy or predefined routes for handling tasks, which
can be considered as a form of policy prior. To introduce
similar policy priors for guidance, we suggest employing a
language-vision foundation model Mτ̂ (s0|T ) : S×T → τ̂ ,
which generates latent videos of task-solving trajectories τ̂ .
Since the current embodiment data (eg, actions) cannot be
accessed in the internet-scale data, we propose to train an
inverse dynamics model ρ(st, ss+1) : S × S → A in Eq.
(1) by the rolled-out trajectory τ in environments.

Lρ = KL(ρ(st, st+1), at), st, st+1 ∈ τ. (1)

Then the inverse model ρ can infer actions from the gen-
erated task-solving trajectory, surpassing the performance
of random actions. Afterward, the action provided by the
inverse model ρ can serve as a policy prior to guiding the
policy π by KL divergence. As a result, we train the policy
π through actor-critic learning, incorporating the KL align-
ment with the policy prior as depicted in Equation (2).

Lπ = KL(π(st|T ), ρ(st, ŝt+1))− αAπ log π(st|T ),
where Aπ = βMR(st+1) + (MV(st+1)−MV(st)),

and st, st+1 ∈ τ, ŝt+1 ∈ τ̂ .
(2)

, where α = 1, β = 100 are trade-offs. To optimize the
inverse model ρ and policy π, we minimize the training ob-
jectives Lρ and Lπ respectively.

The detailed training pipeline is in Alg.1. For a given
task T , a task-solving trajectory τ̂ is generated, and the
agent takes the policy π to roll out a trajectory τ in the envi-
ronments. Then we simultaneously train the inverse dynam-
ics model ρ and the policy model π. Finally, we can obtain
the trained policy model π for the current embodiment.

Algorithm 1 Policy Learning Guided by Foundation Priors

1: Given online replay buffer D, task horizon H ,
inverse dynamics model ρ, policy model π,
Foundation models MR,MV ,Mτ̂ .

2: while not finished task T do
3: Generate task-solving trajectory τ̂ = Mτ̂ (s0|T ).
4: Roll out trajectory τ in the environment with π,

D ← D
⋃
(τ, τ̂)

5: Train ρ and π by objective (1) and (2) respectively.
6: end while=0
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A. Related Work
Robotics Learning with Large-scale Data The ability

to leverage generalized knowledge from large and varied
datasets has been shown in the fields of CV and NLP, but
this is absent in robotics currently. Some works [1, 6, 8, 11]
utilize the large language model for embodied planning or
semantic guidance for alignment. Apart from the large lan-
guage model for planning, SayCan [1] also trains a value
network to provide grounding connections to the physics
environments. For low-level control to reach the goals,
they collect large amounts of in-domain data for behavior
cloning. However, we are not aimed at solving the task-
planning problems in robotics. Instead, we focus on the
low-level atomic tasks for each subgoal, which is challeng-
ing due to the various control embodiments and complex
environments. And this kind of scope is omitted when re-
searchers apply the foundation models to the robotics field
for better generalization ability. Our framework is key to
the low-level control issues in robotics with large amounts
of cheap and diverse data. Moreover, we introduce the re-
ward and value foundation models for reinforcement learn-
ing. Meanwhile, the demonstrations generated by the video
foundation model give heuristic guidance for the learned
policy.

Robotics Transformer [2] is built on a novel transformer
architecture with large amounts of multi-modal data, which
takes an image and language description as input and gener-
ates the arm actions for low-level tasks. Gato [24] tokenizes
multi-modal, multi-task as well as multi-embodiment inputs
and scales up a large transformer sequence model to learn a
generalist agent through imitation learning. However, those
methods require large amounts of in-domain data for behav-
ior cloning.

Policy Learning with Video Generation Models Apart
from the works based on imitation learning, some re-
searchers make progress in leading text-guided video gener-
ation for learning a universal policy. ROSIE [28] performs
aggressive data augmentation for existing robotic manipu-
lation datasets through text-to-image diffusion models. But
the video generation model is considered an augmentation
tool for policy learning. Instead, UniPi [4] learns video gen-
eration and inverse dynamics models on large in-domain ex-
pert videos. The video model gives a demonstration of the
current state, and then the agent takes actions generated by
the inverse dynamics. However, such a learning paradigm is
not scalable and transferable across different embodiments
and environments for the sake of training the inverse dy-
namics model offline. Instead, we attempt to learn a policy
model rapidly for the current embodiment after some trials
with the help of foundation models.

Foundation Models for Reward/Value Predictions For
reinforcement learning, reward and value terms can be
also approximated through foundation models under large

amounts of task-agnostic data. MineDoJo [9] learns a re-
ward function on top of large pre-trained video-language
models for Minecraft [13, 14]. But they train the policy
with PPO [20, 25] and self-imitation [20]. Instead, we
introduce the video generation model for trajectory guid-
ance, which accelerates policy learning on a large scale.
Some works [18, 19] provide language-conditioned reward
functions to generate task reward signals based on offline
datasets. In terms of value prediction, VIP [17] is the first
to train a goal-conditioned value function on large-scale un-
labeled videos. Most of the current reward/value foundation
models are conditioned on the language goal, which is part
of the GMDP and can be unified in our framework.
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