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1. Introduction
A well-known shortcoming of generative language mod-

els is that they can generate language which, despite be-
ing syntactically and semantically sound, is not grounded
in facts [2, 17]. A growing body of recent work has shown
how combining language models (LM) with external infor-
mation sources makes it possible to reduce such hallucina-
tions by letting the model directly attend to external infor-
mation [15, 18, 24]; an approach commonly referred to as
grounding. A common approach to grounding is to moni-
tor a model’s output for the occurrence of certain syntactic
patterns (such as the presence of agreed-upon tags) and to
let an external source fill in information in the LM’s stead,
after which the LM continues its generation [5, 15, 17, 19].
A similar approach may be used to let an LM-based agent
interact with an external environment by monitoring for,
and executing, generated actions in the environment [4,20].
These types of interactions between the LM and external
systems are often enabled by LM augmentation with exter-
nal plug-and-play modules, and orchestrators that coordi-
nate LM prompts and generation [17].

This kind of external environment grounding is applica-
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Figure 1. Overview of the state-augmented architecture

ble in typical turn-based dialogue scenarios that iterate be-
tween user-posed questions and LM responses. In this sce-
nario, individual turns are typically blocking, in that the in-
teraction loop is frozen until the current participant finishes
their turn. This blocking aspect continues to be a limiting
factor of recent agentic instantiations of LMs where given a
user instruction, the LM begins to execute a series of, often
rigidly implemented, iterative planning and sub-goal execu-
tion steps [22].

Our motivation for studying LMs in the context of sit-
uated real-world interactions is two-fold: First, situating
language in real-world interactions is a critical open prob-
lem and a long-standing goal of human-computer interac-
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tion. Second, the lack of grounding in real-time, sensory in-
formation constitutes a fundamental semantic gap between
concept formation in language models versus humans, and
is a likely culprit for LM hallucinations [13]. Bridging this
gap is quite likely an essential step on the path towards
general-purpose, human-like AI.

1.1. Situated communication testbed and baseline

We consider a human-AI interaction scenario in which
real-time visual percepts of human activity, from a raw RGB
camera input, are streamed continuously to an orchestrator-
managed LM for online lingual response generation.

Despite the rapid recent progress, this is still a highly
challenging scenario for existing models; multi-modal
vision-based applications remain limited to turn-based
VQA-style querying of LMs [1, 9–11]. In contrast, we ex-
plore vision-LM interaction as an online and dynamic sit-
uated dialogue. This interaction style necessitates a rich
input stream with high information density that needs to
be rapidly winnowed down to a manageable task-specific
scope.

2. Multi-modal orchestrator
Reasoning over a real-time visual input stream of dis-

crete image token embeddings, with the full stream pre-
served, would quickly bloat any LM’s context window. In-
stead, we propose to use a stateful orchestrator that prompts
the language model, when appropriate, with distilled task-
pertinent visual information. An overview of the architec-
ture, with an optional speech input, is shown in Figure 1.

Driven by activated triggers, the orchestrator calls the
language model using contextualized prompts, that include
(i) a task description, (ii) pertinent state information, (iii)
interaction exemplars, (iv) a history of responses, and (v)
a query representative of the activated triggers. Generated
responses are then returned to the orchestrator as a candi-
date reaction to be considered for execution. Internal state
management by the orchestrator lifts the burden of long-
range consistency from the LM, allowing it to focus on the
fusion and consolidation of information within its prompt.
Additionally, we leverage the in-context learning abilities of
LMs and demonstrate the usage of additional state context
and multi-turn dialogue not present during training using a
few-shot exemplar prefix. A virtually embodied avatar con-
trolled by Unity will vocalize selected responses with auto-
mated lip-sync; animation and UI display commands may
also be sent by the orchestrator.

A key feature of our approach is the asynchronous pro-
cessing of vision, language, and front-end modules from the
core orchestrator logic. In contrast to the 4Hz vision predic-
tion stream, the orchestrator operates at 12Hz to continue
processing model-free control flow triggers and interaction
management processes. This allows for a responsive core

process, unencumbered by slower processing times of NN-
based modules, and allows the language model to operate at
a flexible rate capped at 12 Hz (depending on the availabil-
ity of inputs from the orchestrator).

3. Exercise coaching as a case study on situated
communication

We use fitness coaching as a test bed to evaluate
our method using vision and language models fine-tuned
specifically on expert-curated, fine-grained fitness activity
recognition and feedback data. This testbed provides a
high-paced dynamic interaction where LM responses must
be generated and delivered rapidly, in real-time, to fast-
changing environment states. Despite this constituting a
highly narrow (albeit real-world) task domain, it is suffi-
ciently open-ended to allow for dialogue.

3.1. Exercise video data and vision network

We crowdsourced the recording of short video clips of
length 3 to 10 seconds, each showing a single person per-
forming a repetition of a given exercise totalling approxi-
mately 300, 000 clips, or approximately 5, 000 clips per ex-
ercise. Fine-grained variations of each exercise were col-
lected similar to [14, 21].

Using this, we trained a 3d convolutional network based
on the Efficientnet-lite-v4 architecture [23] with multiple
distinct recognition heads to map video clips to qualitative,
quantitative, and repetition labels; pretraining of the net-
work was done on ImageNet [7].

3.2. Language data and model

We collected a comprehensive collection of text re-
sponses encompassing a complete interaction spanning
introductions, workout generation, exercise explanation,
workout navigation, live exercise form feedback, and out-
going feedback summarization and remarks. In total we
collected just over 8.5k exercise-specific lines across 136
exercises and 2k general workout lines.

We fine-tuned a handful of publicly available decoder-
only language models, namely Pythia (2.8B and 6.9B) [3],
and Pythia-chat-base (7B) [6] on the fitness dataset; natu-
ral language pretraining data and the OIG dataset [16] were
used for regularization.

Quantitative evaluations: We assess the diversity of
generated responses through Self-BLEU [26], and the
quality of generated responses through perplexity and
BERTScore [8, 12, 25]. Results are presented in Table 1.

Human evaluations: We evaluate model generations in
terms of their contextual relevance (labeled “Relevance”)
and to what degree they reflect multi-hop reasoning (labeled
“Multi-hopness”). Results are shown in Table 1.



Model Variant Self-BLEU (↓) Perplexity (↓) BERTScore (↑) Relevance Multi-Hopness
train test train test 0-shot 9-shot 0-shot 9-shot

Pythia (2.8B) Base 0.403 30.5 29.8 0.8412 0.8378 1.33 1.50
Fitness FT + OIG 2.093 7.12 15.3 0.8643 0.8528 3.02 3.21 2.66 2.79

Pythia (6.9B) Base 0.390 28.8 28.0 0.8418 0.8378 1.24 1.06
Fitness FT + OIG 0.607 14.7 17.8 0.8541 0.8476 2.23 3.75 1.90 3.52

Pythia-CB (7B) Base 11.55 67.8 64.8 0.8434 0.8380 1.86 1.68
Fitness FT + OIG 1.561 14.3 16.8 0.8488 0.8446 2.80 3.21 2.44 2.72

Pythia-CB (7B) Base - - - - - 2.09 3.03 1.71 2.78
(Desc. names) Fitness FT + OIG - - - - - 2.94 3.38 2.81 2.79

Table 1. Evaluation of model generations from Pythia (2.8B and 6.9B) and Pythia-chat-base (shown as Pythia-CB). Self-BLEU [26], Per-
plexity, and BERTScore [8,12,25] are presented to represent model generation diversity and semantic similarity to ground truth responses.
Relevance and Multi-hopness columns present the average ratings from 17 labellers using a 5-point likert scale; a multi-hopness score
above three indicates contextualized multi-turn responses. Base: pre-trained model; Fitness FT + OIG: fine-tuned model regularized with
OIG dataset. As a reference, the Self-BLEU for the ground truth responses is 8.678.
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