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1. Introduction
Episodic training, where an agent’s environment is re-

set to some initial condition after every success or failure,
is the de facto standard when training embodied reinforce-
ment learning (RL) agents. Work in learning without any
resets, i.e. Reset-Free RL (RF-RL) [2–4, 10, 12–16, 18], is
very promising but is plagued by the problem of irreversible
transitions which hinder learning. Moreover, the limited
state diversity and instrument setup encountered during RF-
RL means that works studying RF-RL largely do not require
their models to generalize to new environments.

In this work, we instead look to minimize, rather than
completely eliminate, resets while building visual agents
that can meaningfully generalize. Refer to Fig 1 for com-
parisons with episodic, RF-RL, and our proposed Reset-
Minimizing RL (RM-RL). We propose a new Stretch Pick-
and-Place (STRETCH-P&P) benchmark designed for evalu-
ating generalizations across goals, cosmetic variations, and
structural changes. Moreover, towards building performant
reset-minimizing RL agents, we propose unsupervised met-
rics to detect irreversible transitions and a single-policy
training mechanism to enable generalization. Our proposed
approach significantly outperforms prior episodic, reset-
free, and reset-minimizing approaches achieving higher
success rates with fewer resets in STRETCH-P&P and
another popular RF-RL benchmark. Finally, we find
that our proposed approach can dramatically reduce the
number of resets required for training other embodied
tasks, in particular for RoboTHOR ObjectNav we ob-
tain higher success rates than episodic approaches us-
ing 99.97% fewer resets. The full paper is available at
https://arxiv.org/abs/2303.17600.

2. The Stretch Pick-and-Place Benchmark
We build our benchmark within AI2-THOR [7], a high

visual fidelity simulator of indoor environments. Dur-
ing evaluation in STRETCH-P&P, a Stretch RE1 Robot is
placed before a table within a room. On this table are two
objects, a container and a small household item. The agent
is given a text description of a task involving how the house-
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Figure 1. In episodic RL agents have their environments reset after
every success or failure. In RF-RL, “reset games” are designed
for learning so long as special care is taken to avoid irreversible
transitions. We consider RM-RL where in realistic and dynamic
environments agents may request human interventions but should
minimize these requests.

hold item should be moved where this instruction can be
semantic e.g., “Put apple into plate”, or point-based, “Put
the apple at X” where X encodes the relative position be-
tween the goal coordinate and the agent’s gripper. To study
generalization, we consider four evaluation settings: (1) Po-
sitional out-of-domain (POS-OOD): the environment and
objects are seen during training but object and goal posi-
tions are randomized to be much more diverse. (2) Visually
out-of-domain (VIS-OOD): object instances are the same
as in training but the lighting and the materials/colors of
background objects will be varied. (3) Novel objects (OBJ-
OOD): none of the above visual augmentations will be ap-
plied but the container and household object instances will
be distinct from those seen during training. (4) All out-of-
domain (ALL-OOD): the agent experiences visual augmen-
tations from (2), novel object instances as in (3), and the ad-
dition of new background distractor objects simultaneously.
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(a) Sawyer Peg

IND OOD Resets

Ours 1.00±0.00 0.98±0.02 113.3±7.5
FB-RL+GT 1.00±0.00 0.86±0.08 304.0±0.0
Periodic 1.00±0.00 0.98±0.02 303.3±1.0
Episodic 1.00±0.00 0.95±0.00 30k
[14] 0.80±0.20 0.05±0.05 128.8±44.0

(b) STRETCH-P&P

POS VIS OBJ ALL Resets

0.93±0.07 0.78±0.02 0.07 0.02 678.7±40
0.29±0.02 0.20±0.00 0.02 0.007 890±236.5
0.05±0.04 0.04±0.04 0.01 0.00 592.0±0.0
0.54±0.04 0.36±0.02 0.03 0.00 66k

(c) ObjectNav

Success SPL Resets

Ours 0.551 0.275 635
H=300 0.355 0.167 1M
H=10k 0.418 0.218 10k
H=∞ 0.339 0.178 60
[6] 0.504 0.234 2M

Table 1. Sawyer Peg for in-domain and out-of-domain random box hole tests within 3M training steps, with an extra comparison with
supervised method [14]. STRETCH-P&P for four evaluations when budget=1, trained for 3M steps. ObjectNav Benchmark success and
SPL evaluating in the unseen validation set, training for 100M steps.

During training, the agent is placed before a table with a
container and a household object. The table, lighting, and
object materials are all kept constant during training. Upon
requesting a reset, the agent’s position, as well as the posi-
tion of the two objects, may be placed into any initial con-
figuration. As achieving this generalization may be chal-
lenging, we do consider allowing more diversity to be intro-
duced during training by allocating a budget for more than
one seen object or container.

3. Methods
Measures of Irreversibility. Some irreversible transitions
are explicit, e.g. a glass is dropped and shatters. How-
ever, in a more complex real-world environment, they may
be more subtle. In such cases, the robot may find success
challenging, but not strictly impossible. We refer to these
states that are difficult, but not impossible, to recover from
as near-irreversible (NI) states. Intuitively, undergoing an
NI transition should correspond to a decrease in the degrees
of freedom available to the agent to manipulate its envi-
ronment: that is, if an agent underwent an NI transition at
timestep i then the diversity of states τπ(i + 1), . . . , τπ(t)
should be small compared to the diversity before undergo-
ing the irreversible transition. To formalize this, we can
compute the above count, which we call φW,α,d,(Tt), as

max
(i0,...,im)∈P (t)

m−1∑
j=0

1[ij+1−ij≥N ]·1{d(τπ(ij),...,τπ(ij+1−1))<α}

where d : SH → R≥0 is some non-negative measure of di-
versity among states. As φW,α,d is a counting function, we
can turn it into a decision function simply by picking some
count N > 0 and deciding to reset when φW,α,d ≥ N .
In our experiments we evaluate several diversity measures
d(s1, . . . , sH) including: (1) a dispersion-based method us-
ing an empirical measure of entropy or the mean standard
deviation of all si, (2) a distance-based method using Eu-
clidean distance or dynamic time warping (DTW).
Single Policy. In contrast to the multi-policy Forward-
Backward RL (FB-RL) approaches used by most works
studying FB-RL, we aim to use a single policy to achieve
RM-RL that can adapt to general embodied tasks. Recall

the objective for goal-conditioned POMDP in traditional
episodic RL: argmaxπ E [

∑∞
t=0 γ

tr(st, at | g)]. In FB-RL,
the “forward” goal space is normally defined as a singleton
Gf = {g⋆} for the target task goal g⋆ (e.g. the apple is on
the plate). The goal space for “backward” phase is then the
(generally limited) initial state space Gb = I ⊂ S such that
Gf ∩ Gb = ∅. As the goal spaces in FB-RL are disjoint and
asymmetric, it is standard for separate forward/backward
policies and even different learning objectives for training
FB-RL agents. In our setting, however, there is only a sin-
gle goal space which, in principle, equals the entire state
space excluding the states we detect as being NI states.

4. Experiments
We consider three tasks in different embodied settings:

the STRETCH-P&P, Sawyer Peg [12, 17], and RoboTHOR
ObjectNav [1] tasks.1 We compare against FB-RL with
ground truth resets for explicit irreversible states (FB-
RL+GT) and a periodically resetting approach which resets
every fixed number, e.g. 10k, of steps (Periodic). All models
are trained using the PPO [9] RL algorithm. We use frozen
CLIP [8] with CNN adapters to encourage visual gener-
alization and language understanding for STRETCH-P&P
tasks. The model used for Sawyer Peg is similar as [5, 11]
but we only use single CNN visual encoder that digests both
views for parameter-efficiency. We use the same ResNet50
CLIP architecture with only egocentric visual observation
input for ObjectNav as proposed in [6].

As shown in Table 1, our method achieves high success
rates more consistently and with far fewer resets than other
baselines. Surprisingly our method is also more efficient in
terms of training steps. This suggests that our measures of
NI transitions can consistently and accurately identify time-
points where a reset will be of high value for learning. In-
tuitively the forward-backward gameplay of FB-RL models
should be easier to learn than when using random targets as
the space of goal states of FB-RL is a small subset of those
used when randomizing targets. However, we demonstrate
that random targets introduce little additional difficulty over
FB-RL, and provide significant benefit in positional gener-
alizations.

1Visualizations at https://zcczhang.github.io/rmrl
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