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Figure 1. Dynamic-Resolution Model Learning for Object Pile Manipulation in the Real World. Depending on the progression of a
task, representations at different granularity levels may be needed at each model-predictive control (MPC) step to make the most effective
progress on the overall task. In this work, we construct dynamic-resolution particle representations of the environment and learn a unified
dynamics model using graph neural networks (GNNs) that allows adaptive selection of the abstraction level. In this figure, we demonstrate
a real-world task of gathering the object pile into a target region. Figures on the left show the task execution process and the corresponding
particle representation. The plot on the right shows the predicted optimal resolution at each MPC step, where the red circles correspond to
the frames on the left.

Abstract
Dynamics models learned from visual observations have

shown to be effective in various robotic manipulation tasks.
One of the key questions for learning such dynamics mod-
els is what scene representation to use. Prior works typi-
cally assume representation at a fixed dimension or resolu-
tion, which may be inefficient for simple tasks and ineffec-
tive for more complicated tasks. In this work, we investigate
how to learn dynamic and adaptive representations at dif-
ferent levels of abstraction to achieve the optimal trade-off
between efficiency and effectiveness. Specifically, we con-
struct dynamic-resolution particle representations of the en-
vironment and learn a unified dynamics model using graph
neural networks (GNNs) that allows continuous selection
of the abstraction level. During test time, the agent can
adaptively determine the optimal resolution at each model-
predictive control (MPC) step. We evaluate our method in
object pile manipulation, a task we commonly encounter in
cooking, agriculture, manufacturing, and pharmaceutical
applications. Through comprehensive evaluations both in

the simulation and the real world, we show that our method
achieves significantly better performance than state-of-the-
art fixed-resolution baselines at the gathering, sorting, and
redistribution of granular object piles made with various
instances like coffee beans, almonds, corn, etc.

1. Introduction
Predictive models are core to robotic systems for nav-

igation [25], locomotion [28], and manipulation [22, 71].
In robotic manipulation, learned dynamics models have
demonstrated impressive results. A learning-based dynam-
ics model includes an encoder and a predictive model.
Scene representation choices (e.g., latent vectors [19, 20,
33], object-centric [15, 69] or keypoint representations [37,
40, 66]) affect expressiveness and generalization capabili-
ties, which makes it crucial for a given task.

Prior work uses a fixed representation for the entire task,
but the optimal representation may differ depending on the
object, task, or stage. An ideal representation balances effi-
ciency and effectiveness [5, 61]. For instance, in object pile
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Figure 2. Overview of the proposed framework. (a) Our perception module h processes the input RGBD image and generates particle
representations at different levels of abstraction depending on the resolution ω. (b) The resolution regressor g takes the current observation
y0 and the goal yg as input. It then predicts the resolution ω we intend to represent the environment. The dynamics model f , conditioned
on the dynamically-selected resolution ω and the input action ut, predicts the temporal evolution of the scene representation zω

t . During
planning time, we calculate the task objective c(zω

T , yg) and backpropagate the gradients to optimize the action sequence {ut}.

manipulation, a more complex target configuration needs a
finer model to capture all the details. While for the same
targets, we might want representations at different abstrac-
tion levels for the most effective actions at different stages,
as shown in Figure 1.

We focus on manipulating object piles, a crucial task
in cooking, agriculture, manufacturing, and pharmaceutical
scenarios. This task is highly challenging due to the envi-
ronment’s extremely high degrees of freedom [52], making
it an ideal scenario to demonstrate how we can learn dy-
namics models at different levels of abstraction to achieve
the optimal trade-off between efficiency and effectiveness.

Our aim is to learn a dynamics model that can adap-
tively express the world at different granularity levels based
on the task objective and observation. To achieve this,
we introduce a resolution regressor that predicts the op-
timal resolution using self-supervised learning with labels
from Bayesian optimization [18]. Besides the resolution re-
gressor, our model also includes perception, dynamics, and
planning modules (Figure 2).

During task execution, we follow a model-predictive
control (MPC) framework. At each MPC step, the reso-
lution regressor predicts the resolution most effective for
control optimization. The perception module then samples
particles from the RGBD visual observation based on the
predicted resolution. The derived particle-based scene rep-
resentation, together with the robot action, will be the input
to the dynamics model to predict the environment’s evolu-
tion. The dynamics model can then be used for trajectory
optimization to derive the action sequence. Specifically, the
dynamics model is instantiated as a graph neural network
consisting of node and edge encoders. Such compositional
structures naturally generalize to particle sets of different

sizes and densities—a unified graph-based dynamics model
can support model-predictive control at various abstraction
levels, selected continuously by the resolution regressor.

Our contributions are threefold: (1) a framework that dy-
namically determines the scene representation at different
abstraction levels, (2) comprehensive evaluations showing
the superiority of our dynamic scene representation over
fixed resolution, and (3) a unified robotic manipulation sys-
tem for various object pile manipulation tasks.

2. Method

In this section, we first present the problem formula-
tion in Section A.1. We then discuss the structure of our
dynamic-resolution dynamics models, how we learn a reso-
lution regressor to automatically select the scene represen-
tation, and how we use the model for the downstream plan-
ning tasks in Section A.2, A.3 and A.4 respectively.

3. Experiments

In this section, we evaluate the proposed framework in
various object pile manipulation tasks. In particular, we aim
to answer the following three questions through the exper-
iments. (1) Does a trade-off exist between efficiency and
effectiveness as we navigate through representations at dif-
ferent abstraction levels? (2) Is a fixed-resolution dynam-
ics model sufficient, or do we need to dynamically select
the resolution at each MPC step? (3) Can our dynamic-
resolution model accomplish three challenging object pile
manipulation tasks: Gather, Redistribute, and Sort? Ex-
periments details can be found in Section B
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Appendix
A. Method
A.1. Problem Formulation

Our goal is to derive the resolution ω to represent the
environment to achieve the best trade-off between efficiency
and effectiveness for control optimization. We define the
following trajectory optimization problem over a horizon T :

min
{ut}

c(zω
T , yg),

s.t. ω = g(y0, yg),

zω
0 = h(y0, ω),

zω
t+1 = f(zω

t , ut, ω),

(1)

where the resolution regressor g(·, ·) takes the current obser-
vation y0 and the goal configuration yg as input and predicts
the model resolution. h(·, ·), the perception module, takes
in the current observation y0 and the predicted resolution
ω, then derives the scene representation zω

0 for the current
time step. The dynamics module f(·, ·, ·) takes the current
scene representation zω

t , the input action ut, and the res-
olution ω as inputs, and then predicts the representation’s
evolution at the next time step zω

t+1. The optimization aims
to find the action sequence {ut} to minimize the task objec-
tive c(zω

T , yg).
In the following sections, we describe (1) the details

of the perception module h(·, ·) and the dynamics mod-
ule f(·, ·, ·) in Section A.2, (2) how we obtain the self-
supervision for the resolution regressor g(·, ·) in Sec-
tion A.3, and (3) how we solve Equation 1 in a closed plan-
ning loop in Section A.4.

A.2. Dynamic-Resolution Model Learning

To instantiate the optimization problem defined in Equa-
tion 1, we use graphs of different sizes as the representation
zω
t = (Ot, Et), where ω indicates the number of vertices

in the graph. The vertices Ot = {oit}i=1,...,|Ot| denote the
particle set and oit represents the 3D position of the ith parti-
cle. The edge set Et = {ejt}j=1,...,|Et| denotes the relations
between the particles, where ejt = (uj

t , v
j
t ) denotes an edge

pointing from particle of index vjt to uj
t .

To obtain the particle set Ot from the RGBD visual
observation yt, we first transform the RGBD image into
a point cloud and then segment the point cloud to obtain
the foreground according to color and depth information
ȳt ∈ RN×3. We then deploy the farthest point sampling
technique [42] to subsample the foreground but ensure suf-
ficient coverage of ȳt. Specifically, given already sampled
particles o1,...,i−1

t , we apply

oit = argmax
yk∈ȳt

min
ojt∈o1,...,i−1

t

∥yk − ojt∥22 (2)

to find the ith particle oit. We iteratively apply this process
until we reach ω particles. Different choices of ω indicate
scene representations at different abstraction levels, as illus-
trated in Figure 2a. The edge set is constructed dynamically
over time and connects particles within a predefined dis-
tance while limiting the maximum number of edges a node
can have.

We instantiate the dynamics model f(·, ·, ·) as graph neu-
ral networks (GNNs) that predict the evolution of the graph
representation zω

t under external actions ut and the selected
resolution ω. f(·, ·, ·) consists of node and edge encoders
f enc
O (·, ·, ·), f enc

E (·, ·, ·) to obtain node and edge representa-
tions:

pit = f enc
O (oit, ut, ω), i = 1, . . . , |Ot|,

qjt = f enc
E (o

uj
t

t , o
vj
t

t , ω), j = 1, . . . , |Et|.
(3)

We then have node and edge decoders f dec
O (·, ·), f dec

E (·, ·)
to obtain the corresponding representations and predict the
representation at the next time step:

rjt = f dec
E (qjt , ω), j = 1, . . . , |Et|,

ôit+1 = f dec
O (pit,

∑
j∈Ni

rjt ), i = 1, . . . , |Ot|, (4)

where Ni is the index set of the edges, in which particle i
is the receiver. In practice, we follow Li et al. [32] and use
multi-step message passing over the graph to approximate
the instantaneous propagation of forces.

To train the dynamics model, we iteratively predict fu-
ture particle states over a time horizon of T and then op-
timize the neural network’s parameters by minimizing the
mean squared error (MSE) between the predictions and the
ground truth future states:

L =
1

T · |Ot|

T∑
t′=1

|Ot|∑
i=1

∥ôit+t′ − oit+t′∥22. (5)

A.3. Adaptive Resolution Selection

The previous sections discussed how to obtain the parti-
cle set and how we predict its evolution given a resolution
ω. In this section, we present how we learn the resolution
regressor g(·, ·) in Equation 1 that can automatically deter-
mine the resolution in a self-supervised manner. Specifi-
cally, we intend to find the resolution ω that is the most
effective for minimizing the task objective given the cur-
rent observation y0 and the goal yg . We reformulate the
optimization problem in Equation 1 by considering ω as a
variable of the objective function as the following:

c∗(y0, yg, ω) = min
{ut}

c(zω
T , yg),

s.t. zω
0 = h(y0, ω),

zω
t+1 = f(zω

t , ut, ω).

(6)



For a given ω, we solve the above optimization problem
via a combination of sampling and gradient descent us-
ing shooting methods [60] under a given time budget—the
higher resolution representation will go through fewer opti-
mization iterations. For simplicity, we denote the objective
in Equation 6 as c∗(ω) in the following part of this section.

Given the formulation, we are then interested in finding
the parameter ω that can minimize the following objective:

min
ω

c+(ω) = c∗(ω) +R(ω),

s.t. ω ∈ (ωmin, ωmax),
(7)

where R(ω) is a regularizer penalizing the choice of an
excessively large ω to encourage efficiency. Regularizer
details can be found in supplementary materials. We use
Bayesian optimization [56] to find the optimal ω by it-
eratively sampling ω and approximating c+(ω) using the
Gaussian process. At each sampling stage, we sample
one or more data points ωi according to the expected im-
provement of the objective function and evaluate their value
c+(ωi). Then, at the approximation stage, we assume
the distribution of c+(ω) follows the Gaussian distribu-
tion N (µ(ω), σ2); thus, the joint distribution of the eval-
uated points Ωtrain = [ω1, . . . , ωn] and the testing points
Ωtest = [ω′

1, . . . , ω
′
m] can be expressed as the following:

Ctrain = [c+(ω1), . . . , c
+(ωn)],

Mtrain = [µ(ω1), . . . , µ(ωn)],

Ctest = [c+(ω′
1), . . . , c

+(ω′
m)],

Mtest = [µ(ω′
1), . . . , µ(ω

′
m)],[

Ctrain
Ctest

]
∼ N

([
Mtrain
Mtest

]
,

[
K K∗
K⊤

∗ K∗∗

])
,

(8)

where K is a kernel function matrix derived via K =
K(Ωtrain,Ωtrain). K(·, ·) is the kernel function used to com-
pute the covariance. Similarly, K∗ = K(Ωtrain,Ωtest) and
K∗∗ = K(Ωtest,Ωtest).

Equation 8 shows the joint probability of Ctrain and Ctest
conditioned on Ωtrain and Ωtest. Through marginalization,
we could fit c+(ω) using the following conditional distribu-
tion:

Ctest|Ctrain,Ωtrain,Ωtest ∼
N (K⊤

∗ KCtrain,K∗∗ −K⊤
∗ K

−1K∗).
(9)

We can then use the mean value of the Gaussian distribution
in Equation 9 as the metric to minimize c+(ω). Therefore,
the solution to Equation 7 is approximated as the following:

ω∗ = argmin
ω

K⊤
∗ KCtrain

s.t. ω ∈ (ωmin, ωmax).
(10)

To train the resolution regressor, we randomly generate
a dataset containing the observation and goal pairs (y0, yg).

For each pair, we follow the above optimization process to
generate the optimal resolution label ω∗. We then train the
resolution regressor ω = g(y0, yg) to predict the resolution
based on the observation and the goal via supervised learn-
ing. Training the ω regressor is a self-supervised learning
process, as the labels are automatically generated via an op-
timization process without any human labeling.

A.4. Closed-Loop Planning on Adaptive Repr.

Now that we have obtained the resolution regressor g,
the perception module h, and the dynamics module f . We
can wire things together to solve Equation 1 and use the
optimized action sequence in a closed loop within a model-
predictive control (MPC) framework [8]. Specifically, for
each MPC step, we follow Algorithm 1, which first deter-
mines the resolution to represent the environment, then uses
a combination of sampling and gradient descent to derive
the action sequence through trajectory optimization using
the shooting method. We then execute the first action from
the action sequence in the real world, obtain new observa-
tions, and apply Algorithm 1 again. Such a process allows
us to take feedback from the environment and adaptively se-
lect the most appropriate resolution at each step as the task
progresses. Figure 2b also shows an overview of the future
prediction and inverse planning process. Details including
task objective definition and MPC hyperparameter are in-
cluded in supplementary materials.

Algorithm 1 Trajectory optimization at each MPC step
Input: Current observation y0, goal yg , time horizon T ,

the resolution regressor g, the perception module h,
the dynamics module f , and gradient descent iteration

N
Output: Actions u0:T−1

Predict the resolution ω ← g(y0, yg)
Obtain the current representation zω

0 ← h(y0, ω)
Sample M action sequences û1:M

0:T−1

for m = 1, . . . ,M do
for i = 1, . . . , N do

for t = 0, . . . , T − 1 do
Predict the next step zω

t+1 ← f(zω
t , û

m
t , ω)

end for
Calculate the task loss cm ← c(zω

T , yg)
if i < N then

Update ûm
0:T−1 using gradients∇ûm

0:T−1
cm

end if
end for

end for
m∗ ← argminm cm

Return ûm∗

0:T−1



A.5. Perception Module Details

Building graph zω
t = (Ot, Et) from point cloud ȳt ∈

RN×3 contains two phases. First, we sample Ofps
t from

the point cloud using farthest-point sampling. Specifically,
given already sampled particles o1,...,i−1

t , we apply

oit = argmax
yk∈ȳt

min
ojt∈o1,...,i−1

t

∥yk − ojt∥22 (11)

to find the ith particle oit. We iteratively apply this process
until we reach ω particles. We found that sampled particles
from the point cloud are likely to be at the edge of under-
neath objects. To bias sampled particles towards object cen-
ters, we define Ot as mass centers of Ofps

t neighbor points.
For example, for oi,fps

t ∈ Ofps
t , we find the corresponding

oit ∈ Ot by applying

ȳt
′ = {y|y ∈ ȳt, ||y − oi,fps

t ||2 ≤ rcenter}

oit =
1

|ȳt′|
∑
y∈ȳt

′

y.
(12)

rcenter is the hyperparameter to determine the neighbor
points.

To find edges Et, we first approximate particle displace-
ments ∆Ot using the action ut. We compute the sweeping
region given the action ut. If oit is within the sweeping re-
gion, ∆oit is the vector from oit to the pusher end. We define
Ôt = ∆Ot + Ot. For ôti, (ôti, ôtj) ∈ Et if it satisfies the
following criteria:

||ôti − ôt
j ||2 < redge

ôt
j ∈ kNN(ôt

i).
(13)

redge is the hyperparameter to determine the distance needed
for two nodes to interact. kNN(ôt

i) is the set of k-nearest-
neighbor of the node ôt

i and k is a hyperparameter.

A.6. Distribution Distance

We compute distribution distance to evaluate the per-
formance of different methods on gathering tasks quanti-
tatively. The distribution distance is computed similarly to
the task objective. We use the RGBD observation to seg-
ment out the foreground object and obtain foreground pix-
els Ft ∈ RF×2. Similar to Equation 14, the distribution
distance d is defined using the following equation:

d =
∑

fi∈Ft

min
qj∈Qt

||fi − qj ||2 +
∑

qj∈Qt

min
fi∈Ft

||fi − qj ||2

(14)

A.7. High-Level Planner for Sort Task

In the sort task, we use a high-level planner to avoid col-
liding between two object piles. We use the A* search algo-
rithm to find the high-level path. We represent every blob

Workspace

Pusher

RGBD 
Camera

Object Piles

(a) Robot setup

(b) Object piles considered in this work

Figure 3. Robot setup and the testing object piles. (a) The
dashed black square shows the robot’s workspace. The robotic
manipulator, equipped with a pusher at the end effector, pushes
the object piles within the workspace. A calibrated RGBD cam-
era mounted at the top provides visual observations of the envi-
ronment. (b) We show the object piles considered in this work,
including M&M, almond, granola, candy, carrot, rice, corn, and
coffee beans.

of object piles as a circle with a fixed radius in image space.
Therefore, the state for one blob can be represented as its
2D blob center in image space. For the search algorithm, if
there are k blobs in the scene, the node is the concatenation
of k blob centers. One node is connected to nodes that can
be reached by changing one blob center in a single step with
no collision.

To accelerate motion planning, we divide the image
space into a sparse grid. The blob center will only be on
the grid. In addition, to encourage a path with fewer steps,
we add a constant cost for each path so that a path with
fewer steps is preferred.
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(a) Same initial but different goal configurations (b) Same goal but different initial configurations
Current observation Overlay the target Bayesian optimization Current observation Overlay the target Bayesian optimization

Figure 4. Optimal resolution differs depending on the initial and goal configurations. (a) We show two examples with the same
initial but different goal configurations. We apply Bayesian optimization to solve the problem discussed in Section A.3 to find the optimal
resolution for both cases. The example with a more complicated target shape requires a higher-resolution representation to be the most
effective at making task progress. (b) When the goal is to gather the pieces in the center of the workspace, a coarse representation is
sufficient for examples with spread-out pieces. The task progresses as long as the agent pushes any outlying pieces toward the goal region.
In contrast, a higher-resolution representation is needed to reveal the subtle difference between the initial and goal configurations when
they are close.

B. Experiment
B.1. Setup

We conduct experiments in both the simulation environ-
ment and the real world. The simulation environment is
built using NVIDIA FleX [31, 36], a position-based simu-
lator capable of simulating the interactions between a large
number of object pieces. In the real world, we conducted
experiments using the setup shown in Figure 3a. We use
RealSense D455 as the top-down camera to capture the
RGBD visual observations of the workspace. We attach a
flat pusher to the robotic manipulator’s end effector to ma-
nipulate the object piles.

B.2. Tasks

We evaluate our methods on three object pile manipula-
tion tasks that are common in daily life.

• Gather: The robot needs to push the object pile into a
target blob with different locations and radii.

• Redistribute: The robot is tasked to manipulate the
object piles into many complex target shapes, such as
letters.

• Sort: The robot has to move two different object piles
to target locations without mixing each other.

We use a unified dynamics model for all three tasks, which
involve objects pieces of different granularities, appear-
ances, and physical properties (Figure 3b).

B.3. Trade-Off Between Efficiency and Effective-
ness

The trade-off between efficiency and effectiveness can
vary depending on the tasks, the current, and the goal con-
figurations. As we have discussed in Section A.3, given
the resolution ω, we set a fixed time budget to solve the
optimization problem defined in Equation 6. Intuitively, if
the resolution is too low, the representation will not contain
sufficiently detailed information about the environment to
accomplish the task, the optimization of which is efficient
but not effective enough to finish the task. On the contrary,
if we choose an excessively high resolution, the represen-
tation will carry redundant information not necessary for
the task and can be inefficient in optimization. We thus
conduct experiments evaluating whether the trade-off ex-
ists (i.e., whether the optimal resolution ω calculated from
Equation 10 is different for different initial and goal config-
urations).

We use Bayesian optimization and follow the algorithm
described in Section A.3 to find the optimal trade-off on
Gather and Redistribute tasks in the simulation. As shown
in Figure 4a, higher-resolution dynamics models do not nec-
essarily lead to better performance due to their optimization
inefficiency. Compared between goal configurations, even
if the current observation is the same, a more complicated
goal typically requires a higher resolution representation to
make the most effective task progression. More specifically,
when the target region is a plain circle, the coarse represen-
tation captures the rough shape of the object pile, sufficient
for the task objective, allowing more efficient optimization



than the higher-resolution counterparts. However, when the
target region has a more complicated shape, low-resolution
representation fails to inform downstream MPC of detailed
object pile shapes. Therefore, high-resolution representa-
tion is necessary for effective trajectory optimization.

The desired representation does not only depend on goal
configurations. Even if the goal configurations are the same,
different initial configurations can also lead to different op-
timal resolutions, as illustrated in Figure 4b. When the ini-
tial configuration is more spread out, the most effective way
of decreasing the loss is by pushing the outlying pieces to
the goal region. Our farthest sampling strategy, even with
just a few particles, could capture outlying pieces and helps
the agent to make good progress. Therefore, when pieces
are sufficiently spread out, higher particle resolution does
not necessarily contain more useful information for the task
but makes the optimization process inefficient. On the other
hand, when the initial configuration concentrates on the
goal region, to effectively decrease the task objective, MPC
needs more detailed information about the object pile’s ge-
ometry to pinpoint the mismatching area. For example, the
agent needs to know more precise contours of the goal re-
gion and the outlying part of object piles to decide how to
improve the planning results further. Low-resolution repre-
sentations will be less effective in revealing the difference
between the current observation and the goal, thus less help-
ful in guiding the agent to make action decisions.

B.4. Is a Single Resolution Dynamics Model Suffi-
cient?

Although there is a trade-off between representation res-
olution and task progression, can we benefit from this trade-
off in trajectory optimization? We compared our dynamic-
resolution dynamics model with fixed-resolution dynamics
models on Gather and Redistribute tasks. Figure 1 shows
how our model changes its resolution prediction as MPC
proceeds in the real world. Trained on the generated dataset
of optimal ω, our regressor learned that fixing a resolu-
tion throughout the MPC process is not optimal. Instead,
our regressor learns to adapt the resolution according to the
current observation feedback. In addition, for the example
shown in Figure 1, we can see that the resolution increases
as object piles approach the goal. This matches our expec-
tation as explained in Section B.3.

We quantitatively evaluate different fixed-resolution
baselines and our adaptive representation learning algo-
rithms in simulation. We record the final step distribution
distance between object piles and the goal. Specifically,
given a distance threshold τp, the number of tasks with a
distance lower than τp is Np, and the total number of tasks
is N . The task score is then defined as Np/N (i.e., y-axis
in Figure 5). Our adaptive resolution model almost always
achieves the highest task score, regardless of the threshold

T
as

k
 S

co
re

Distribution Distance Threshold

Figure 5. Model-predictive control (MPC) results. We evaluated
the MPC performance on different representation choices. We use
the task score as the evaluation metric. Task execution trial results
in a distribution distance lower than the threshold is considered a
success. The task score is the number of successful trials divided
by the total number of task trials for both the Gather and Redis-
tribute tasks. Our method automatically and adaptively selects
the scene representation, which achieves the best overall perfor-
mance compared with the scores of fixed-resolution baselines and
a method that uses convolutional neural networks (CNN) as the
dynamics model class.

used.

Figure 6a shows a qualitative comparison between the
fixed-resolution baselines and our dynamic-resolution se-
lection method on the Gather task in the real world. All
methods start from a near-identical configuration. We can
see from the qualitative results that our method manipulates
the object pile to a configuration closest to the goal region,
whereas the best-performing fixed-resolution baseline still
has some outlying pieces far from the goal region. In addi-
tion, we could see from the quantitative evaluation curve in
Figure 6b that our model is always the best throughout the
whole MPC process. Representations with an excessively
high resolution are unlikely to converge to a decent solu-
tion within the time budget, as demonstrated by resolutions
75 and 100. Conversely, if the representation is too low
resolution, it will converge to a loss much higher than our
model. A resolution of 25 reached a comparable final loss
to our method. However, because the same resolution was
ineffective for initial timesteps, its loss does not reduce as
rapidly as our adaptive approach. Because our model could
adapt to different resolutions in different scenes, making it
more effective at control optimization.

That is why our model could reach the goal region faster
than all other fixed-resolution models and consistently per-
forms better at all timestamps, highlighting the benefits of
adaptive resolution selection.



B.5. Can a Unified Model Achieve All Tasks?

We further demonstrate that our method could work on
all three tasks and diverse object piles. For the Gather task,
we test our method on different objects with different initial
and goal configurations. From left to right in Figure 6c, our
agent gathers different object piles made with almond, gra-
nola, or M&MTM. Different appearances and physical prop-
erties challenge our method’s generalization capability. For
example, while almonds and granola are almost quasi-static
during the manipulation, M&MTM will roll around and have
high uncertainties in its dynamics. In addition, unlike al-
monds and M&MTM, granola pieces are non-uniform. Our
method has a good performance for all these objects and
configurations.

For the Redistribute task, we redistribute carrots and al-
monds into target letters ‘J’, ‘T’, and ‘U’ with spread-out
initial configurations. The final results match the desired
letter shape. Please check our supplementary materials for
video illustrations of the manipulation process.

For the Sort task, we use a high-level motion planner to
find the intermediate waypoints in the image space. Then
we use a similar method as Gather task to push the ob-
ject pile into the target location. For the three examples
shown in Figure 6e, we require object piles to go to their
own target locations while not mixing with each other. Ob-
jects with different scales and shapes are present here. For
example, coffee beans have smaller granularity and round
shapes, while candies are relatively large and square. Here
we demonstrate success trials of manipulating the object
piles to accomplish the Sort task for different objects and
goal configurations. Please check our video for the manip-
ulation process.

C. Related Work
C.1. Scene Representation at Different Levels

To build multi-scale models of the dynamical sys-
tems, prior works have adopted wavelet-based methods and
windowed Fourier Transforms to perform multi-resolution
analysis [13, 14, 29]. Kevrekidis et al. [26, 27] inves-
tigated equation-free, multi-scale modeling methods via
computer-aided analysis. Kutz et al. [30] also combined
multi-resolution analysis with dynamic mode decomposi-
tion for the decomposition of multi-scale dynamical data.
Our method is different in that we directly learn from vision
data for the modeling and planning of real-world manipula-
tion systems.

In computer vision, Marr [38] laid the foundation by
proposing a multi-level representational framework back
in 1982. Since then, people have investigated pyramid
methods in image processing [1, 7] using Gaussian, Lapla-
cian, and Steerable filters. Combined with deep neural
networks, the multi-resolution visual representation also

showed stunning performance in various visual recognition
tasks [21, 70]. In the field of robotics, reinforcement learn-
ing researchers have also studied task- or behavior-level ab-
stractions and come up with various hierarchical reinforce-
ment learning algorithms [2, 6, 16, 44, 45, 47, 65]. Our
method instead focuses on spatial abstractions from vision,
where we learned structured representations based on parti-
cles to model the object interactions within the environment
at different levels.

C.2. Compositional Model Learning for Robotics

Physics-based models have demonstrated their effective-
ness in many robotic manipulation tasks (e.g., [22, 46, 58,
71]). However, they typically rely on complete information
about the environment, limiting their use in scenarios where
full-state estimation is hard or impossible to acquire (e.g.,
precise shape and pose estimation of each one of the object
pieces in Figure 1). Learning-based approaches provide a
way of building dynamics models directly from visual ob-
servations. Prior methods have investigated various scene
representations for dynamics modeling and manipulation
of objects with complicated physical properties, including
clothes [24, 34], ropes [10, 41], fluids [33], softbodies [53],
and plasticine [54]. Among the methods, graph-structured
neural networks (GNNs) have shown great promise by in-
troducing explicit relational inductive biases [4]. Prior
works have shown GNNs’ effectiveness in modeling com-
positional dynamical systems involving the interaction be-
tween multiple objects [3, 9, 17, 32, 50, 55], systems repre-
sented using particles or meshes [31, 43, 48, 51, 64], or for
compositional video prediction [23, 49, 62, 67, 68, 69, 72].
However, these works typically assume scene representa-
tion at a fixed resolution, whereas our method learns a uni-
fied graph dynamics model that can generalize to scene rep-
resentations at different levels of abstraction.

C.3. Object Pile Manipulation

Robotic manipulation of object piles and granular pieces
has been one of the core capabilities if we want to deploy
robot systems for complicated tasks like cooking and manu-
facturing. Suh and Tedrake [57] proposed to learn visual dy-
namics based on linear models for redistributing the object
pieces. Along the lines of learning the dynamics of gran-
ular pieces, Tuomainen et al. [63] and Schenck et al. [52]
also proposed the use of GNNs or convolutional neural dy-
namics models for scooping and dumpling granular pieces.
Other works introduced success predictors for excavation
tasks [35], a self-supervised mass predictor for grasping
granular foods [59], visual serving for shaping deformable
plastic materials [11], or data-driven methods to calibrate
the physics-based simulators for both manipulation and lo-
comotion tasks [39, 73]. Audio feedback has also shown to
be effective at estimating the amount and flow of granular
materials [12]. Our work instead focuses on three tasks us-
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(a) Qualitative comparison between fixed-resolution baselines and our automatic resolution selection method

(b) Task loss reduction on the gathering trial shown in (a)
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Figure 6. Qualitative results in the real world. (a) Our method outperforms in gathering corn pieces into the target region qualitatively.
(b) Quantitative comparisons for the qualitative results in (a). Starting from similar initial configurations, our automatic resolution selection
method performs the best throughout the MPC steps. (c) Our method is evaluated on the Gather task with various objects varying in scales
and physical properties. (d) Our method can redistribute object pieces into complicated target configurations, such as letter shapes. (e)
Our method can be combined with a high-level planner for more complex tasks, such as sorting different object piles into target regions.

ing a unified dynamic-resolution graph dynamics to balance
efficiency and effectiveness for real-world deployment.
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