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Abstract

Our work focuses on the Multi-Object Navigation (Mul-
tiON) task, where an agent needs to navigate to multiple
objects in a given sequence. We systematically investigate
the inherent modularity of this task and develop a simple but
effective modular approach with four modules: (a) an object
detection module trained to identify objects from RGB im-
ages, (b) a map building module to build a semantic map of
the observed objects, (c) an exploration module enabling the
agent to explore its surroundings, and finally (d) a navigation
module to move to identified target objects. We show that
we can effectively reuse a PointGoal navigation model in the
MultiON task instead of learning to navigate from scratch.
Our experiments show that a PointGoal agent-based navi-
gation module outperforms analytical path planning on the
MultiON task. We also compare exploration strategies and
surprisingly find that a uniform top-down sampling strategy
significantly outperforms more advanced exploration meth-
ods. We additionally create MultiON 2.0, a new large-scale
dataset as a test-bed for our approach.

1. Introduction

Embodied AI research has seen tremendous progress
across various tasks with the availability of fast and high-
fidelity simulators [24, 27, 11], deep reinforcement learning
advances [25, 15], improved memory representation [14, 5,
28] and self-supervision schemes [9, 13, 26, 21], and par-
allel training infrastructure [29, 12, 18, 3]. Near-perfect
performance on basic navigation tasks such as PointGoal
where the agent navigates to a relative goal position has been
achieved [29]. However, navigation tasks [4, 2, 17, 20, 8]
where the agent needs to find objects or areas in the envi-
ronment are far from solved. Such tasks require the agent to
possess capabilities such as visual understanding, mapping
and exploration in addition to basic navigation (see Fig. 1).

In this work, we study how we can leverage agents trained
on the simpler PointGoal task in the context of more com-
plex long-horizon navigation tasks. We propose a modular
approach called Modular-MON, where each module is re-
sponsible for a specific task. In summary: i) we show that
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Figure 1: Approach Overview. We tackle long-horizon
navigation tasks by proposing a modular approach, Modular-
MON, to leverage their inherent modularity. Our approach
consists of four modules: (1) Object detection (O), (2) Map
building (M), (3) Exploration (E) and (4) Navigation (N ).

our modular approach can effectively leverage pre-trained
models and heuristics-based approaches to solve complex
navigation task; ii) we show that a pretrained PointNav agent
outperforms analytical path planners by a significant mar-
gin; iii) we compare rule-based exploration strategies and
find that a simple strategy based on uniform top-down sam-
pling outperforms more complex methods; and iv) we create
MultiON 2.0, a new large-scale dataset as a test-bed for our
approach. iv) we create MultiON 2.0, a new large-scale
dataset for multi-object navigation.

2. Approach

In Modular-MON, we take a modular approach to multi-
object navigation by employing the following modules: (1)
Object detection (O), (2) Map building (M), (3) Exploration
(E) and (4) Navigation (N ). These modules are intuitively
weaved together. The first two contribute to acquiring and
storing semantic knowledge about the environment, while
the latter two enable efficient embodied navigation. Modular-
MON identifies objects (O) by observing the environment
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and builds a semantic map (M) by projecting the category
labels of the objects (i.e. semantics) in the field of view. If
the agent has not yet discovered the current goal, it will
continue to explore (E). Once the current goal has been
discovered, Modular-MON plans a path from its current lo-
cation to the goal, and generates actions to navigate (N )
towards the goal. We experiment with different exploration
and navigation strategies to systematically investigate their
contribution to the agent performance. For the Exploration
(E) module, we compare a simple Uniform Top-down Sam-
pling with the more complex Stubborn [19] and Frontier [31],
whereas for the Navigation (N ) modules, we compare a pre-
trained PointNav module with heuristics-based analytical
path planners such as Shortest Path Follower [24], BFS [10]
and FMM [6]. For our Object detection (O) module, we use
two separate FasterRCNN [23] (finetuned offline) to identify
cylinders and natural objects in the MultiON task. On the
other hand, we use a pre-trained RedNet[16] from [5] for the
ObjectNav experiments. As our Map building (M) module,
we project semantic labels of the objects onto a 2D grid map
of the environment using depth observations following [7].

3. Experiments and Results

Task. In the MultiON task, the agent needs to navigate
to a sequence of objects in a given order. Once the agent
has reached each object and generated the Found action
successfully, it is given the next goal. This continues until the
agent has found all the goals in the episode. We also evaluate
Modular-MON on the ObjectNav task from Batra et al. [4]
which is an single-hop visual navigation task. ObjectNav
allows the agent a maximum of 500 steps compared to 2500
in MultiON. the widely adopted Habitat platform [24] for
our experiments.
Dataset. For our experiments, we prepared MultiON 2.0 –
a large-scale dataset for the Multi-Object Navigation task.
Compared to the original MultiON dataset [28], MultiON
2.0 is built on top of the large-scale HM3D [22] dataset
containing 10x more scenes, uses an additional set of Nat-
ural objects1, includes distractor objects, and has longer
episodes. For the ObjectNav experiments, we use the Ob-
jectNav dataset from Habitat challenge 2022[30] which is
built using HM3D scenes and contains six object categories.
Metrics. In addition to the standard visual navigation met-
rics such as success and SPL [1] we use the metrics intro-
duced by Wani et al. [28], the progress and PPL. We use
a neural PointNav policy trained using the established dis-
tributed PPO [29] framework for efficient parallelization on
HM3D scenes.
Baselines. We compare OracleSem agent, which builds a
semantic map using egocentric depth observations to project

13D models from https://sketchfab.com/3d-models dis-
tributed under permissive licenses.

Dataset Object detection Val

Success Progress SPL PPL

PredictedSem MultiON 2.0 (CYL) FRCNN [23] 50 65 21 26
MultiON 2.0 (NAT) FRCNN [23] 28 47 11 18
ObjNav-2022[30] RedNet[16, 5] 30 - 28 -

OracleSem MultiON 2.0 (CYL) GT 80 87 35 38
MultiON 2.0 (NAT) GT 80 85 35 38
ObjNav-2022[30] GT 64 - 30 -

Table 1: Modular-MON performance. OracleSem, using
oracle semantic labels, outperforms PredictedSem in gen-
eral. PredictedSem performs better on Cylinder objects than
Natural objects in MultiON, and considerably well on the
ObjectNav task. These experiments use Uniform Top-down
Sampling as Exploration (E), PointNav [22] (‘PN’) as Navi-
gation (N ) and [7] as Map building (M).

the semantic labels directly from the Habitat simulator, with
the PredictedSem, which builds the semantic map with pre-
dicted semantic labels using a pre-trained object detector.
Results. In Tab. 1, first we observe that OracleSem agents
outperform PredictedSem agents in general, which is intu-
itive since the former uses oracle semantic labels from the
simulator. Performance drop in PredictedSem agents is due
to the limitation of the object detector modules. Note that
all these methods use Uniform Top-down Sampling w/ Fail-
Safe (‘Uf’) as the Exploration module and PointNav [22]
(‘PN’) as the Navigation module. Second, we observe that
PredictedSem performs better on cylinder objects than the
natural objects in MultiON 2.0 dataset, which can be intu-
itively explained by the fact that cylinder objects are easier
to detect than the more diverse natural objects with varying
shapes, colors and sizes. Our third observation is that we
can effectively evaluate our Modular-MON on other naviga-
tion tasks, such as ObjectNav, by only swapping the object
detector module and still achieve significant performance.

Furthermore, we find through various experiments that
using a pre-trained PointNav is more effective than the ana-
lytical path planners as the Navigation module and using a
simple Uniform Top-down Sampling outperforms the com-
plex strategies, such as Stubborn and Frontier.

4. Conclusion and Future Work
We carried out a systematic analysis of the different mod-

ules of our Modular-MON to show that using a pre-trained
PointGoal navigation agent is very effective in addressing
the more complex MultiON task as well as ObjectNav task.
We believe our findings will encourage the community to use
modular approach towards solving complex tasks and thus
leverage available pre-trained models for different modules,
instead of training new end-to-end models from scratch.
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