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1. Introduction
Consider the problem of finding a set of objects in a

novel environment. In many practical cases, the order in
which the objects are found does not matter. However, the
order does matter from the perspective of efficiency. If we
anticipate finding certain objects near each other based on
known semantic relationships, we should plan to search for
them sequentially. For example, if two objects will proba-
bly be found in a kitchen and a third will not, then we should
look for both of the objects in the kitchen before moving to
find another object in a different room. Furthermore, if the
environment is novel, we need to balance exploiting these
contextual semantic priors with exploring the specific un-
known layout of the environment. In this work, we propose
a method for reasoning over these type of semantic relation-
ships in order to efficiently find a set of unordered objects.

The challenge of this problem is two-fold. First, from
the perspective of developing long horizon sequential plans,
the agent needs to reason over an optimal ordering of tar-
gets while taking into account uncertainty in their positions.
Second, to navigate efficiently, the agent needs to leverage
contextual semantic priors in order to develop target-driven
navigation plans without prior access to a map. Prior work
in multi-object navigation considers ordered [2, 10–12, 16]
and unordered [14] cases in which objects are spawned
randomly in their environment, removing the challenge of
leveraging contextual semantic priors. Semantically mean-
ingful target locations were introduced recently in a task for
ordered multi-object navigation [18]. We consider an un-
ordered navigation scenario in which objects are typically
found in semantically meaningful fixed locations.

2. Approach
To solve our proposed multi-object navigation task, we

need to trade off the exploitation of prior contextual se-
mantic understanding with exploration of the novel envi-
ronment. To enable this planning approach, we explic-
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Figure 1. Our novel framework for navigating to an unordered set
of target objects. We explicitly predict unobserved semantic maps
over which we estimate uncertainty and register those predictions
in a global semantic map. Then, our long-horizon planner creates
a cost-map for each target object based on their predicted locations
and associated uncertainty from which the top-k locations are se-
lected for each target. Finally, it combinatorially constructs paths
from these candidate locations and selects the best path with our
objective in Equation 1.

itly predict unseen semantic maps and estimate uncertainty
over those predictions with an approach leveraged in prior
novel environment navigation tasks [3–5]. This prediction
model f is defined as an ensemble of hierarchical segmen-
tation models to predict a semantic map of the unseen en-
vironment. The input is an incomplete occupancy region
o′t ∈ R|Co|×h×w and a ground-projected semantic segmen-
tation χ̂t ∈ R|Cχ|×h×w at time-step t. The output is a top-
down semantic local region m̂t ∈ R|Cχ|×h×w, where Co is
the set of occupancy classes containing unknown, occupied,
and free, Cχ is the set of semantic classes, and h, w are
the dimensions of the local crop. Following prior work [4],
we construct f as an ensemble of models for which the
the mean estimates P (mt|o′t, χ̂t) and the variance approxi-
mates the uncertainty of model predictions.

We use this semantic map predictor to estimate an op-
timal ordered path to find a given set of unordered tar-
get objects via an upper confidence bound (UCB) policy.
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Figure 2. Pair-wise conditional probability of navigation success
over 3-object navigation. P(A) in this figure is the probability
of finding object A given that at least one other object is found.
∆P (A|B) := P (A|B) − P (A), where P (A|B) is the probabil-
ity of finding A given that B is found. We abbreviate the object
classes Bed, Cabinet, Chair, Sofa, and Table as B, Ca, Ch, S, and T
respectively. The graphical model shows experimentally observed
semantic relationships between different object classes.

Figure 3. Success, SPL, and Progress over 3000 time steps for
1-, 2-, 3-, and 4-object navigation methods. An episode is con-
sidered successful if the agent is able to navigate to all the tar-
get object categories within the maximum number of steps before
ending the episode. Progress is the percent of objects the agent
successfully finds within the episode time limit. Success weighted
by path length (SPL) downweights the success rate by the ratio of
the shortest possible path from the agent to all the target objects to
the path taken by the agent.

We denote fc as the ensemble-based map prediction func-
tion f which only returns the values for a given target
class c. We denote σc(o

′
t, χ̂t) =

√
Var fc(o′t, χ̂t; θ) as the

standard deviation of the target class probability computed
over models in the ensemble, and we denote the mean as
µc(o

′
t, χ̂t) = 1

N

∑N
i=1 fc(o

′
t, χ̂t; θi). Let ζ be the collec-

tion of n distinct semantic targets for which classes are
not repeated. For each class c ∈ ζ, we choose the top
k values of µc(o

′
t, χ̂t) + α1σc(o

′
t, χ̂t), the upper bound of

Pc(mt|o′t, χ̂t), the conditional probability class c is at loca-
tion i. We use these upper bounds and associated locations
to construct and score a set of candidate paths γ. Candi-
date paths are defined by the n estimated target locations
assigned the ordering resulting in the shortest Euclidean dis-
tance starting from the current agent position to each esti-
mated target location. We select the candidate path with the

highest score and begin traversing it. On a fixed interval set
by a hyperparameter, we replan, selecting the path again by
using the set of semantic targets which have not yet been
successfully reached.

We now explain how we construct and score paths from
the top k candidate locations for each target class. First,
paths are constructed by choosing every combination of lo-
cations where one candidate for each class is selected. We
select the ordering of each set of object locations that has
the minimal Euclidean distance, generating kn path candi-
dates. We denote j as the node index in the path γi. Since
each planned path γi is now ordered, we can downweight
the contribution of later nodes γi, following the temporal
logic planning literature [6–9] to form the objective

argmax
γi∈γ

n−1∑
j=0

α−j
0 (µj(o

′
t, χ̂t) + α1σj(o

′
t, χ̂t)− α2dj,j+1)

(1)
where dj,j+1 is the Euclidean distance between nodes j and
j + 1 and α0, α1 and α2 are hyperparameters. To perform
target-driven navigation, local predicted semantic regions
are registered to a global map which is used during plan-
ning. We use DD-PPO [17] to navigate to the first map
location in the path selected by our UCB policy.

3. Results
We execute multi-object navigation experiments with the

Matterport3D dataset (MP3D) [1] in the Habitat simula-
tor [13, 15] to enable interaction with the 3D residential
home reconstructions provided by MP3D. Unordered navi-
gation is performed with combinations from the following 5
semantic object categories: bed, sofa, chair, table, cabinet.
The action space consists of MOVE FORWARD by 25cm,
TURN LEFT by 10◦, TURN RIGHT by 10◦, and STOP.
An object is successfully found by the agent if the agent
is within 1 meter of the target object. The semantic map
prediction model uses the pre-trained weights from prior
work [4].For all of our experiments, we use an ensemble
size of 4. Figure 3 shows success metrics.

In our task definition, we emphasize the need to have se-
mantically meaningful object locations to match real-world
robotic use case scenarios. One reason this task design
is important is so that methods can exploit these semantic
relationships for increased performance over long-horizon
planning. We demonstrate that our method successfully
achieves this capability by computing the conditional prob-
ability of success over 3-object navigation. In our problem,
two objects are semantically associated if they frequently
co-occur in our test scenes. Figure 2 demonstrates the se-
mantic relationships visualized in a graphical model which
align with our own contextual semantic understanding of
home layouts. Our method demonstrates that it exploits
these relationships in planning since the directional change



in conditional probability of navigation success is consistent
for all classes (if ∆P (A|B) >= 0, then ∆P (B|A) >= 0).
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