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Abstract

Recent progress in physics-based character animation
has enabled learning diverse skills from large motion cap-
ture datasets. However, most often only a single charac-
ter shape is considered. On the other hand, work on con-
trolling various body shapes with one policy is limited to
few motions. In this paper, we first evaluate the general-
ization capabilities of latent skill embeddings on physics-
based character control for varying body shapes. We then
propose two strategies to learn a single policy that can gen-
eralize across different body shapes. In our experiments, we
show that these simple but effective strategies significantly
improve the performance over state-of-the-art, without hav-
ing to retrain the skill embeddings from scratch.

1. Introduction

Animating simulated characters in a physically plausi-
ble manner has many applications in AR/VR, robotics, and
graphics. Particularly in Embodied AI, a key goal is to make
virtual characters move around and interact with their envi-
ronment in natural and plausible ways. Recently, a lot of
progress has been achieved by leveraging motion capture
data and reinforcement learning (RL) to synthesize charac-
ter motions in physics simulations [1–8, 11]. Approaches
mostly rely on tuned reward functions that compare the
character motions to ground truth [3,6,11] or use a discrim-
inator to indicate if a motion appears realistic [7, 8]. De-
spite significant progress in training a single policy across
a wide variety of skills using latent embeddings [7], a rel-
atively under-researched problem is the variation of body
shapes [9, 10]. [10] parameterize the body shape variations
and condition a policy explicitly on the body shape. How-
ever, they build upon [6] and therefore focus on imitating
single motions only. Meanwhile, [9] considers multiple mo-
tions, but does not leverage large-scale skill embeddings.
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Figure 1. Visual example of a subset of different body shapes.

In this work, we explore the setting of general skill em-
beddings under varying body shapes. We first evaluate the
zero-shot performance of state-of-the-art [7] when the body
shape is changed at inference. We find that the policy trans-
fers poorly to unseen body shapes. Thus, we propose two
strategies that improve the performance of pre-trained skill
embeddings under varying body shapes.

2. Approach
Both our approaches finetune the pretrained skill embed-

dings from [7], using mocap data and a discriminator for
training. To generate the different body shapes, we vary the
lengths of the arms and legs (see Fig. 1 for a subset of the
body shapes). The physical properties of the body parts,
i.e., the masses, inertia, and collision geometries, are scaled
accordingly. We use 35 body shapes in total.

Domain Randomization In this approach, we random-
ize the body shapes when finetuning the low-level skill em-
beddings. To balance the sampling and focus on improv-
ing low-performing body shapes, we weigh each shape ac-
cording to the zero-shot performance of the pre-trained low-
level policy (see Section 3). During training, we sample the
body shapes according to this pre-computed weight distri-
bution. Note that the policy does not have a notion of the
body shape in this approach and therefore has to find a gen-
eral policy that works across all body shapes.



(a) ASE baseline [7] (b) Ours (Domain Randomization) (c) Ours (Body Shape Aware Policy)

Figure 2. Evaluation. Average success rates across varying body shapes, displayed as heat maps for the baseline [7] and our two
approaches. Our method can better adapt to varying body shapes, which is indicated by the higher success rates (brighter colors).

Figure 3. The modifications (dashed) to the original architecture
(left) of the actor and critic. The modified actor outputs the cor-
rected action and the modified critic outputs the corrected value.

Body Shape Aware Policy In the second approach, we
modify the network architecture of the actor and critic from
[7]. To this end, we add correction networks conditioned
on the output of the low-level networks and the body shape
parameters, i.e., in our case the scaling factors of the body
parts (see Fig. 3). They adapt the action and value from the
low-level networks according to the new body shape. The
correction networks’ outputs are added to the original low-
level networks’ outputs as a residual for stability reasons.
We train the correction networks while freezing the weights
of the pre-trained low-level models.

3. Experiments
We now evaluate the performance of the ASE method

and compare it to our proposed approaches. For each
method, we train high-level policies based on the respec-
tive low-level embeddings according to [7]. We focus on
the three distinct tasks ”GetUp”, ”Location”, and ”Reach”.
For the baseline, we use the task-specific pretrained models
from [7]. We evaluate each of the 35 character shapes indi-
vidually and illustrate the results as heat maps in Fig. 2. The
heat maps indicate the average success rates over all three
tasks, where each task is rolled out 100 times with random

Figure 4. Reach task with our domain randomization approach
(left) and the body shape aware policy (right).

initial and goal conditions. The x and y axis represent the
scaling factors of the lower and upper body, respectively.

The ASE model performs well for the base character
which was used during training (i.e., 0.98 for scaling fac-
tors 1.0). We observe a gradual decrease in success rate
with an increase in body shape variation as indicated by
the darker colors. On the contrary, our domain randomiza-
tion approach retains a success rate over 0.76 for all body
shapes. This indicates that a simple change to the training
procedure can already produce policies that are robust to
varying body shapes. Similarly, our body shape aware ap-
proach improves upon the baseline. However, it does not
perform equally well across all characters as the domain
randomization approach. In particular, it struggles with
large scaling factors of the lower body, likely because larger
legs require more adjustments for stable control than shorter
legs due to the higher center of mass. Qualitatively, we find
that the domain randomization approach learns a strategy
that often results in a crouching position, which leads to a
stable humanoid across body shapes (see Fig. 4). While the
body shape aware policy does not perform as well for all
characters, we find that it results in better qualitative results
because it can adapt to the specific body shape.

In conclusion, we have evaluated the zero-shot perfor-
mance of large skill embeddings for physics-based charac-
ters across varying body shapes and found that it struggles
to generalize to unseen body shapes. Hence, we have intro-
duced two simple strategies to alleviate these issues. Our
results show that our proposed approaches can effectively
generalize to different body shapes. In the future, this can be
further investigated by varying body shapes beyond scaling
limbs and retargeting the reference data to the body shapes.
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