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Abstract

The analysis and use of egocentric videos for robotic tasks
is made challenging by occlusion due to the hand and the
visual mismatch between the human hand and a robot end-
effector. In this sense, the human hand presents a nuisance.
However, often hands also provide a valuable signal, e.g. the
hand pose may suggest what kind of object is being held. In
this work, we propose to extract a factored representation
of the scene that separates the agent (human hand) and the
environment. This alleviates both occlusion and mismatch
while preserving the signal, thereby easing the design of
models for downstream robotics tasks. At the heart of this
factorization is our proposed Video Inpainting via Diffusion
Model (VIDM) that leverages both a prior on real-world
images (through a large-scale pre-trained diffusion model)
and the appearance of the object in earlier frames of the
video (through attention). Our experiments demonstrate the
effectiveness of VIDM at improving inpainting quality on
egocentric videos and the power of our factored representa-
tion for numerous tasks: from object detection to learning of
reward functions, policies, and affordances from videos.

1. Introduction

Observations of humans interacting with their environ-
ments, as in egocentric video datasets [2, 5], hold the po-
tential to scale up robotic policy learning. However, a key
bottleneck in these applications is the mismatch in the visual
appearance of the robot and human hand, and the occlusion
caused by the hand. Human hands can be a nuisance. They
occlude objects and induce a domain gap between the data
available for learning (egocentric videos) and the data seen
by the robot at test time. However, hands also provide a valu-
able signal for learning. The hand pose may reveal object
affordances, and the approach of the hand toward objects
can define dense reward functions for learning policies.

In this work, we propose the use of a factored agent
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Figure 1. An agent representation Iagent
t is obtained using a model

to segment out the agent. The environment representation Ienv
t is

obtained by inpainting out the agent from the original image using
VIDM, a novel Video Inpainting Diffusion Model (Sec. 2).
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Figure 2. Agent-Environment factored representations enable
many applications. (a) For perception tasks, Ienv can be used in
addition to the original image. (b) For affordance learning tasks,
Ienv can be used to predict relevant desirable aspects of the agent.
(c) For reward learning tasks Iagent can be transformed into agent-
agnostic formats for more effective transfer across embodiments.

and environment representation. The agent representation is
obtained by segmenting out the hand, while the environment
representation is obtained by inpainting the hand out of
the image (Fig. 1). But how do we obtain such a factored
representation from raw egocentric videos? Rather than just
relying on a generic prior over images, we observe that the
past frames may already have revealed the true appearance
of the scene occluded by the hand in the current time-step.
We develop a video inpainting model that leverages both
these cues. We use a large-scale pre-trained diffusion model
for the former and an attention-based lookup of information
from the past frames for the latter. Our method outperforms
prior inpainting baselines, and improves performance on
many downstream tasks.
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Figure 3. Video Inpainting Diffusion Models (VIDM). We extend
pre-trained single-frame inpainting diffusion models [8] to videos.
Features from context frames (It−h, . . . , It−1) are introduced as
additional inputs into the Attention Block A. We repeat the multi-
frame attention block 8 times (4 to encode and 4 to decode) to
construct the U-Net [9] that conducts 1 step of denoising. The
U-Net operates in the VQ encoder latent space [8].

2. Method

Motivated by the recent success of generative models, we
develop our factorization directly in the pixel space. Given
an image It from an egocentric video, our factored represen-
tation decomposes it into Iagent

t and Ienv
t . Here, Ienv

t shows
the environment without the agent, while Iagent

t shows the
agent (Fig. 1) without the environment. This factorization en-
ables the independent use of agent/environment information,
which can be tailored to the downstream task, see Fig. 2.
Video Inpainting via Diffusion Models (VIDM) The in-
painting function inpaints the mask magent

t in image It using
information in images It−h through It. This is realized
through a neural model that uses attention [10] to extract
information from the previous frames.

We finetune a latent diffusion model [8] which has been
pre-trained on the Places [11] dataset for single-frame in-
painting. To incorporate information from previous frames,
VIDM performs convolutions on the h + 1 sets of spatial
features in parallel but allows attention across all frames at
attention blocks. This way weights from the pre-trained net-
work can be used as-is. The diffusion targets for this model
are frames extracted from Epic-Kitchens [2] and a subset
of Ego4D [5] (kitchen videos). We generate masks based
on human hand shapes from VISOR annotations and do not
propagate loss on human hand pixels in the target images.

3. Experiments

On a reconstruction quality benchmark on held-out scenes
from Epic-Kitchens [2], our model is able to improve PSNR
scores to 32.26, compared to the 28.27 and 26.98 of the
single-frame latent diffusion model [8] (fine-tuned on our
data) and SoTA video inpainter DLformer [7] respectively
(Figure 4). Similarly, VIDM improved SSIM scores to 0.956
vs. 0.932 and 0.922 and achieves an FID score of 10.37 vs.
27.50 and 51.74. On an egocentric object detection bench-
mark, using Ienv combined with I is able to outperform using

a) Raw b) LDM FT [8] c) DLFormer d) VIDM (Ours)

Figure 4. Our approach (VIDM) is able to correctly steal back-
ground information from past frames (top row, oranges on the
bottom right) and also correctly reconstructs the wok handle using
strong object appearance priors (bottom row).

Table 1. Average recall of detections from a COCO-trained Mask
RCNN [6] on active objects from VISOR [3].

Image Used ARall@1 ARall@5 ARall@10

Raw Image (i.e. It) 0.137 0.263 0.272
Ienv
t inpainted using Latent Diffusion (finetuned) 0.154 0.262 0.271
Ienv
t inpainted using VIDM (Ours w/o factorization) 0.163 0.268 0.277
It and Ienv

t inpainted using VIDM (Ours w/ factorization) 0.170 0.379 0.411
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Figure 5. Real-world experiment setup and results. (left) Raw
views from camera, (center) Agent-agnostic representation. (right)
Success rate as a function of CEM iterations.

the raw image alone, or just inpainting the hand (Table 1).
For predicting affordances, on the benchmark from [4], using
Ienv to predict the type of grasp mAP from 0.355 (previous
SoTA masking out hand) to 0.410. In a cross-embodiment
reward learning setting, we transform Iagent to an agent-
agnostic format. We simply place a green dot at the tip of
the human hands/end-effector. We learn reward functions
using in-the-wild human videos from [2] for the tasks of
drawer, cabinet, and refrigerator opening. Following [1]
we measure the Spearman’s rank correlation between the
learned reward function and ground truth on pseudo-robotic
trajectories (collected manually with a 2-finger gripper). Us-
ing the factored representation improves performance from
0.558 (raw videos) to 0.614. Finally, we test the efficacy of
this representation in a real-world robot learning setting. We
use the reward function for drawer opening above (learned
entirely from human videos) and train a policy on a Stretch
RE2 to open a novel drawer in the real world (Figure 5). We
find that using the factored representation greatly speeds up
learning compared to raw images or inpainting only.
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