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1. Introduction
Deep Reinforcement Learning (RL) has shown exciting
progress on many tasks in the embodied AI community
including object navigation [1, 2], rearrangement [3, 4],
language-guided navigation [5, 6] and instruction follow-
ing [7], and question answering [8–12]. However, deep RL
approaches are sample inefficient and require carefully en-
gineered dense rewards so that the learned policy exhibits
the desired behavior [13]. Engineering the ‘right’ reward
is difficult, frequently requires multiple computationally ex-
pensive iterations, and is not generalizable across tasks. A
natural alternative is to use sparse rewards, i.e. the agent will
only be rewarded when it succeeds at the task. Such rewards
require little engineering and are applicable to all tasks that
have a well-defined goal state. Training agents using sparse
rewards with deep RL is, however, empirically difficult: the
lack of training signal during early stages of training means
learning struggles to get off the ground.
Prior works [14–18] have addressed this challenge by us-
ing Curriculum Learning (CL) [19], a learning paradigm
where the difficulty of the training tasks grows progressively
as the agent improves. This paradigm has proven effective
in guiding the learning process, allowing agents to learn
more effectively and efficiently. Recent works have pro-
posed Automatic Curriculum Learning (ACL) [15, 20–22]
as a promising approach to alleviate the burden of designing
a curriculum of tasks manually. In ACL, a curriculum gener-
ator learns to calibrate the complexity and sequence of the
generated tasks tailored to the agent’s (curriculum student)
current capabilities.

Figure 1. ONACL training framework

In this work, we study the use of ACL for training long-
horizon embodied AI tasks. We focus on ACL methods
which generate their curriculum via task selection, i.e. meth-
ods which select training tasks for the agent from a prede-
fined dataset of existing tasks of varying complexity [20–22].
These methods have the advantage that they can be easily
integrated into existing training pipelines: rather than sam-
pling uniformly from an existing training dataset we bias
this sampling to improve learning efficiency. We present a
simple approach, ONACL, which samples the next training
task so that the predicted probability of the agent’s success
on task is near some threshold value. See Fig. 1 for an
overview of ONACL. As training progresses this naturally
results in the agent being presented increasingly difficult
tasks. In particular, suppose that the agent has underwent
S > 0 total steps of training in ONACL. We train a linear
model fS , using agent trajectories collected up to this point
in training, to estimate the task success probability of the
agent’s current policy πS . Using fS we then sample the
tasks of intermediate difficulty for further training as these
tasks provide more learning signal than random tasks for
policy improvement [23]. The agent is trained on these tasks
using standard DD-PPO RL approach [13] and the above
process is repeated.

We present an empirical study of ACL on the ObjectGoal
Navigation (OBJECTNAV) [24] task in the ProcTHOR [25]
and HM3D [26] home environments. We observe that poli-
cies trained without ACL using deep RL with sparse rewards
fail to get off the ground during training. We find with
a simple curriculum learning approach like ONACL, the
agent achieves a significant improvement in performance and
sample efficiency. Surprisingly, however, we find that the
commonly held belief that sparse reward training in HM3D
obtains near 0% success is largely incorrect: if we simply
add a sufficiently large number of ‘easy’ episodes during
policy training then (evaluation set) performance dramat-
ically improves. We hypothesize this happens due to the
emergence of an implicit curriculum during training and
present an analysis supporting the claim. This suggests that,
in some cases, curriculum learning approaches may simply
be correcting for needlessly difficult training datasets.
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2. Experimental Setup

ObjectGoal Navigation (OBJECTNAV). In OBJECT-
NAV [24], an agent receives RGB+D observations and is
tasked with navigating to any object instance of a goal
category (e.g. ‘Find a chair’) from a randomly sampled
start position. The goal is specified using a unique cat-
egory ID. The navigation agent uses six discrete actions:
MOVE_FORWARD, TURN_LEFT, TURN_RIGHT, LOOK_UP,
LOOK_DOWN, STOP. An agent is successful if it calls STOP
action within 1m of any instance of goal category.
Training. We use EmbCLIP [27] agent architecture. We
train agents using RL with sparse rewards using DD-
PPO [13] for 150 million frames of experience using AI2-
THOR [28] and Habitat [29] simulator. We use ProcTHOR-
10k [25] scenes in AI2-THOR and HM3D scenes [26] in
Habitat for our experiments.

3. Experimental Findings

Sampling
Method

Eval Dataset

ProcTHOR-10k-Hard ProcTHOR-10k

SR ↑ SPL ↑ SR ↑ SPL ↑

Uniform 0.16 0.11 0.57 0.43
ONACL 0.56 0.33 0.56 0.41

Table 1. OBJECTNAV evaluation performance of policies trained
on ProcTHOR-10k-Hard and ProcTHOR-10k.

Sampling
Method

Eval Dataset

HM3D HM3D-Easy

SR ↑ SPL ↑ SR ↑ SPL ↑

Uniform 0.0 0.0 0.34 0.18
ONACL 0.02 0.02 0.46 0.22

Table 2. OBJECTNAV evaluation performance of policies trained
on HM3D and HM3D-Easy.

Effectiveness of ONACL. We compare the performance of
agents trained using RL with sparse rewards with uniform
episode sampling to ONACL sampling. We present results
on ProcTHOR-10k-Hard, a dataset with large houses i.e.
4-10 room houses, and ProcTHOR-10k [25], a dataset with
1-10 room houses, in Tab. 1. We find agents trained with
ONACL perform significantly better on the ProcTHOR-10k-
hard dataset and generalize better to unseen scenes. The
uniform sampling baseline (Tab. 1, row 1) obtains a 40%
drop in success rate and 22% drop in SPL on the ProcTHOR-
10k-hard dataset compared to ONACL (Tab. 1, row 2). This
demonstrates that policies trained with a simple curriculum
that samples tasks on the frontier of predicted success rates
outperforms standard uniform sampling. Surprisingly, we
find that training with ONACL doesn’t help improve per-
formance on the ProcTHOR-10k [25] dataset which has
1-10 room houses. We hypothesize ONACL doesn’t help
with ProcTHOR-10k [25] due to an implicit curriculum that

emerges from having a large amount of easier training tasks
that come from having 1-3 room houses in ProcTHOR-10k
dataset.

Figure 2. Average time spent for episodes of varying difficulty
during training for policies trained on ProcTHOR-10k [25] with
random sampling.

Suprising Effectiveness of Easy Tasks. Next, we com-
pare uniform sampling vs. ONACL on HM3D [26, 30] in
Tab. 2. We find that agents trained with uniform sampling
using sparse rewards with RL do not get off the ground and
achieve 0% success on HM3D-VAL split. However, even
with ONACL, policy performance improves only to 2.5%
success on HM3D-VAL. We hypothesize that ONACL fails
is largely due to the lack of ‘easy’ training episodes where a
policy can succeed by taking only a few actions to reach the
target object i.e. distance to target is less than 1m. Without
such episodes, our ONACL cannot efficient learn to predict
which tasks to give the agent. To test this hypothesis, we
generate HM3D-Easy, a new dataset for training OBJECT-
NAV agents in HM3D scenes which includes ‘easy’ episodes.
We observe, simply adding easier training episodes enables
learning with sparse rewards for OBJECTNAV. We hypothe-
size this is due to the fact that early on during training the
policy takes random actions which have a low probability of
succeeding at a long horizon task like OBJECTNAV but by
simply adding ‘easy’ episodes the probability of succeeding
increases which leads to enough learning signal for training
with sparse rewards.

Easier Training Tasks Leads to a Implicit Curriculum.
Fig. 2 shows the average number of steps spent in episodes
of varying difficulty during training within ProcTHOR-10k
scenes when uniformly sampling tasks. Note that an im-
plicit curriculum emerges: the agent quickly spends far less
time in easy episodes (as it completes them quickly) and
instead spends the vast majority of its training time within
more challenging episodes. For instance, the easy DTG 0-
1.99 episodes account for >20% of training episodes but
the agent, by the end of training, spends only 13% of its
training time in such episodes; similarly the hard DTG 8-
9.99 episodes account for only 2% of all episodes but, by
training’s end, almost 10% of the agent’s training steps.
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