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Abstract

While interacting in the world is a multi-sensory experi-
ence, many robots continue to predominantly rely on visual
perception to map and navigate in their environments. We pro-
pose AVLMaps, a 3D spatial map representation that stores
cross-modal information from audio, visual, and language cues.
AVLMaps fuse features from pre-trained multimodal foundation
models into a centralized voxel grid. This enables robots to
index goals in the map based on multimodal queries, such as
textual descriptions, images, or audio snippets of landmarks.
AVLMaps allow for zero-shot multimodal goal navigation and
perform better than alternatives in ambiguous scenarios. These
capabilities extend to mobile robots in the real world. Videos
and code are available at https://avlmaps.github.io1.

1. Introduction
Humans are adept at using multiple senses to navigate the

world [9], but robots mostly rely on visual perception. To
address this limitation, we propose AVLMaps, a 3D spatial
map that integrates audio, visual, and language information.
AVLMaps can be built using pre-trained multimodal mod-
els [6,7,10] and can index landmarks based on open-vocabulary
queries. The system enables language-driven navigation and can
disambiguate multiple goal locations using multimodal informa-
tion, outperforming baseline alternatives by up to 50% in recall.
A key aspect of AVLMaps is that they extend prior multimodal
mapping representations [3,8,19] to include audio information,
which allows robots to more often correctly disambiguate goal
locations using sound – e.g. “go to the table where you heard
coughing” in environments where there are multiple tables, etc.
Additionally, when paired with large language models (LLMs)
we show that AVLMaps enable zero-shot multimodal spatial
goal localization, e.g. “Go in between the {image of a refriger-
ator} and the sound of breaking glass” as in Fig. 1.

2. Method
We aim to create an audio-visual-language map that can di-

rectly localize objects, areas, audio and visual goals using natural
language or target images. We propose AVLMaps by combining
3D reconstruction libraries with pre-trained visual-language and
audio-language models. We also suggest a cross-modal reason-
ing approach to disambiguate locations referring to targets from
different modalities. Fig. 2 shows the system pipeline.

1The link to the arXiv version of our full paper is
https://arxiv.org/pdf/2303.07522.pdf
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Figure 1. AVLMaps provide an open-vocabulary 3D map repre-
sentation for storing cross-modal information from audio, visual,
and language cues. When combined with large language models,
AVLMaps consumes multimodal prompts from audio, vision and
language to solve zero-shot spatial goal navigation by effectively
leveraging complementary information sources to disambiguate goals.

2.1. Building an Audio Visual Language Map

Given an RGB-D video stream with an audio track and
odometry information, we utilize four modules to build a
multimodal features database as AVLMaps.

Visual Localization Module. The module localizes a query
image in a map using a hierarchical scheme [16]. It computes
global [1] and local descriptors [4,17] for all images in the RGB
stream for localizing query images during inference. More
details are shown in Appendix, Sec. A.

Object Localization Module. The Object Localization
Module uses an open-vocabulary segmentation method (e.g.
LSeg [10] or OpenSeg [6]) to generate pixel-level features from
the RGB image and associates them with back-projected depth
pixels in 3D reconstruction. During inference, it encodes a
target text query [15], computes the cosine similarity scores
between all point-wise and language features, and selects the
top-scoring points in the map as the indexing result.

Area Localization Module. We propose building a sparse
topological CLIP features map [20] to recognize coarse
visual concepts like “kitchen area”. During inference, given
a language concept, we compute the language features with
the CLIP language encoder [15] and image-to-language cosine
similarity scores to predict the location with confidence values.

Audio Localization Module. The audio localization module
partitions the audio clip from the audio stream input into several
segments using silence detection and computes audio-lingual
features for each segment with AudioCLIP [7]. During infer-
ence, given a language description, it computes matching scores

https://avlmaps.github.io
https://arxiv.org/pdf/2303.07522.pdf
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Figure 2. System overview. AVLMaps are constructed from RGB-D, audio, and odometry inputs, converting raw data into visual localization
features, visual-language features, and audio-language features. During inference time, each module’s output is unified with cross-modal reasoning,
allowing users to query spatial location with multimodal information.

Sound GT Positions

crying

baby

Cross-Modal

Reasoning

sofa

Object GT Positions

Sound Prediction

(major)

Object Prediction

(auxiliary)

"the sound of baby crying

near the sofa"

Figure 3. The key idea of cross-modal reasoning is converting
the prediction from different modalities into heatmaps, and then
fusing them with element-wise multiplication, effectively using
complementary multimodal information to resolve ambiguous prompts.

between the language and all audio segments. The odometry
associated with the top-scoring segment is the predicted location.

2.2. Cross-Modality Reasoning

A key advantage of our method is its capability to disam-
biguate goals with additional information, even from different
modalities. Each localization module returns a heatmap with
probabilities for each voxel position in the map based on the dis-
tance to the target location. Cross-modal reasoning is performed
by computing the element-wise multiplication of all heatmaps
for several queries referring to different modalities as in Fig. 3,
and the predicted location is extracted from the highest proba-
bility position on the target heatmap. The detailed formulation
of the cross-modality reasoning is in the Appendix, Sec. B.

2.3. Multimodal Goal Navigation from Language

We present a multimodal goal navigation approach that uti-
lizes large language models (LLMs) to interpret natural lan-
guage descriptions of targets from different modalities and plan
paths to them. Our approach unifies various navigation tasks
by using LLMs to synthesize API calls and executable python
code [8,11,12]. To generate heatmaps indicating target locations,
we implement two interfaces with different decay rates. Addi-

tionally, we support image prompts by adding image paths to lan-
guage queries. Prompt examples is listed in Appendix, Sec. C.

3. Experiments
3.1. Multimodal Ambiguous Goal Navigation

We conducted experiments to test our method with
ambiguous goal navigation tasks, requiring reasoning across
different modalities to localize the targets. We compared our
method to two single-modality baselines (VLMaps [8] and
AudioCLIP [7]) and a multimodal baseline using VLMaps for
object localization and wav2clip [22] for audio localization.
The results in Tab. 1 showed that AVLMaps had 24.2% and
2.1% higher success rate for ambiguous sound and object goals,
respectively, compared to the multimodal baseline.

Tasks
No. Subgoals in a Row Sound Object

1 2 Goals Goals

VLMaps [8] - - - 27.1
AudioCLIP [7] - - 16.9 -
VLMaps

+ wav2clip
22.0 12.7 22.0 53.4

VLMaps
+ AudioCLIP

(Ours)
46.2 28.6 46.2 55.5

Table 1: The success rate (%) of multimodal ambiguous goal
navigation with AVLMaps. The agent is required to navigate to one
ambiguous sound goal and one ambiguous object goal sequentially.

4. Conclusion
In this paper, AVLMaps were introduced as a 3D spatial

map representation that can store cross-modal information from
audio, visual, and language cues. AVLMaps can be combined
with large language models to enable zero-shot spatial goal
navigation by effectively leveraging complementary information
sources to disambiguate goals. Experiments showed that
AVLMaps improved target indexing accuracy compared to
baselines, especially in scenarios with ambiguous goals.
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APPENDIX

A. Visual Localization Module
The Visual Localization Module localizes a query image

in a map using a hierarchical scheme [16]. It computes global
NetVLAD descriptors [1] and local SuperPoint descriptors [4]
for all images in the RGB stream and stores them with
corresponding depth and odometry. During inference, it
computes descriptors for the query image, finds a reference
image using nearest neighbor search with global features,
establishes key point correspondences between two images
using SuperGLUE [17], backprojects reference key points
into 3D space to obtain 3D-2D correspondences for query key
points, and estimates query camera pose relative to reference
camera using Perspective-n-Point method [5].

B. Cross-Modality Reasoning Formulation
A key advantage of our method is its capability to disam-

biguate goals with additional information, even from different
modalities. Given a specific query, each module introduced in
the last section returns predicted spatial locations on the map in
the form of 3D voxel heatmaps. A heatmap can be denoted as
H∈ [0,1]H̄×W̄×Z̄ , where H̄, W̄ and Z̄ represent the size of the
voxel map and the value in each element represents the proba-
bility of being the target position. p=(x,y,z)T ,{x,y,z∈Z|1≤
x≤H̄,1≤y≤W̄ ,1≤z≤Z̄} is a voxel position in the map H.

Visual Localization Heatmap. In the visual localization
module, the predicted global camera location is denoted as
pv=(xv,yv,zv)

T . In the heatmapHv, we define the probability
at pv as 1.0, and the probability linearly decays around this
location according to the distance on the top-down map:

Hv(p)=max(1.0−ϵ·distxy(p,pv),0) (1)

distxy(p,q)=
√
(px−qx)2+(py−qy)2 (2)

where ϵ is the decay rate, and distxy(p,q) denotes the distance
between 3D vectors p and q on the xy-plane.

Object Localization Heatmap. The object lo-
calization results are a list of points, denoted as
{poi=(xoi,yoi,zoi)|i=1,2,...,N} where N is the total number
of points for the target object. We define the probabilities for all
these locations as 1.0 in heatmapHo, and the probability linearly
decays around these locations based on the Euclidean distance:

dmin(p)=min{dist(p,poi)|i=1,2,...,N} (3)

Ho(p)=max(1.0−ϵ·dmin(p),0) (4)

where dmin(p) denotes the minimal distance between p and
all object points {poi|i = 1,2,...,N}, dist(p,q) denotes the
Euclidean distance between p and q.

Area Localization Heatmap. The area localization
results are a list of position-confidence pairs, denoted as

{(pai, sai)|i = 1, 2, ..., M} where M is the total number
of frames in the input RGB-D stream. The scores sai are
normalized between 0 and 1. We define the probability for each
pointpai on the heatmap Ha as its score sai, and the probability
linearly decays around the point on the xy-plane direction:

Ha(p)=max(max{sai−ϵ·distxy(p,pai)|i=1,2,...,M},0)
(5)

where the max operator for the curly brackets means taking
the highest probability when a location is inside the affected
regions for several pai.

Audio Localization Heatmap. The audio localization
results are similar to those of the area localization module. The
position-score pairs are denoted as {(psi,ssi)|i= 1,2,...,K}
where K is the total number of sound segments in the input
video stream. The heatmap Hs is defined as:

Hs(p)=max(max{ssi−ϵ·distxy(p,psi)|i=1,2,...,K},0)
(6)

Cross-Modal Reasoning. The main idea of cross-modal
reasoning is shown in Fig. 3. We treat the predictions from
four modules as four modalities. When there are several queries
referring to different modalities, we compute the respective
heatmaps first and then perform element-wise multiplication
among all heatmaps:

Htarget=H1⊙H2⊙...⊙HL (7)

where ⊙ is the element-wise multiplication operator, and L is
the total number of referred modalities. We extract the position
on the target heatmap Htarget that has the highest probability
as the predicted location.

When we compute the heatmaps, there is always a primary
heatmap while others are auxiliary ones. For example, in the
query “the chair near the sound of crying”, the heatmap for
“the chair” is the primary heatmap, while the heatmap for “the
sound of crying” is the auxiliary. We set the decay rate for the
primary heatmap higher (e.g. 0.1 in this work) since we want
to know the exact location of the target, while tuning the decay
rate for the auxiliary heatmap lower (e.g. 0.01) as having a
broader affect area to narrow down major targets is desirable.

C. Multimodal Goal Navigation from Language
Prompt Examples

In the setting of multimodal goal navigation from language,
the agent is given language descriptions of targets from
different modalities (e.g. sound, image, and object) and is
required to plan paths to them. While most of the previous
navigation methods focus mainly on a specific type of goal,
we unify these tasks with the help of large language models
(LLMs). Specifically, we use an LLM to interpret the natural
language commands and synthesize API calls combined
with simple logic structures in the form of executable python



code [8,11,12]. For heatmap generation, we implement inter-
faces get_major_map(obj=None, sound=None, img=None) and
get_map(obj=None, sound=None, img=None). They take ob-
ject name, sound name, or image as input and output heatmaps
indicating the locations of targets. The get_major_map
generates heatmaps with higher decay rate while get_map with
lower decay rate. To support image prompt, we add image path
in the language query like “the image /path/to/image.png” and
use LLMs to call the image loading API. Some examples of
prompts and queries are shown below (prompt in gray, input task
commands in green, and generated outputs are highlighted):

# move to the middle of the sound of cat meowing and
the image: /path/to/image.png
img = robot.load_image("/path/to/image.png")
sound_map = robot.get_major_map(sound="cat meowing")
img_map = robot.get_major_map(img=img)
pos1 = robot.get_max_pos_3d(sound_map)
pos2 = robot.get_max_pos_3d(img_map)
pos = (pos1 + pos2) / 2
robot.move_to(pos)
# move to the window next to the sound of
glass breaking
obj_map = robot.get_major_map(obj="window")
sound_map = robot.get_map(sound="glass breaking")
fuse_map = obj_map * sound_map
pos = robot.get_max_pos_3d(fuse_map)
robot.move_to(pos)
...

# move in between the image ./006899.png and the
backpack near the sound of glass breaking
img = robot.load_image("./006899.png")
img_map = robot.get_major_map(img=img)
obj_map = robot.get_major_map(obj="backpack")
sound_map = robot.get_map(sound="glass breaking")
fuse_map = obj_map * sound_map
pos1 = robot.get_max_pos_3d(img_map)
pos2 = robot.get_max_pos_3d(fuse_map)
pos = (pos1 + pos2) / 2
robot.move_to(pos)

D. Supplement Experiments
D.1. Simulation Setup

Exerimental setup. We use the Habitat simulator [18,21]
with the Matterport3D dataset [2] for the evaluation of
multimodal navigation tasks. The dataset contains a large set
of apartment-level realistic indoor scenes that help evaluate the
generalization capabilities of navigating agents. For mapping
purposes, we manually collect RGB-D video streams in the
simulator across 10 different scenes and add random audio
tracks to the videos to simulate the audio sensing modality. All
audio comes from the validation fold (Fold-1) of the ESC-50
dataset [13], which contains 50 categories of common sounds.
In navigation tasks, the robot has four actions to take: move

forward 0.1 meters, turn left 5 degrees, turn right 5 degrees,
and stop. In sequential goal setting, the robot is required to
navigate to a sequence of goals and take the stop action when
it reaches each subgoal. When the stop position is less than 1
meter from the ground truth position, the subgoal is considered
successfully finished.

Tasks collection. In multimodal goal navigation tasks in
Sec. D.2, we consider three kinds of goals: image goals, object
goals, and sound goals. For image goals, we randomly sample
positions and orientations on the top-down map and render
images as targets. For object goals, we access the metadata
(e.g. bounding boxes and semantics) from the Matterport3D
dataset and sample a list of categories in each scene as queries.
For sound goals, we randomly sample sound classes of audio
merged with the mapping videos as targets, treating the video
frame positions as the ground truth.

In cross-modal goal indexing tasks in Sec. D.3, we collect
three types of datasets:

• Visual-Object cross-modal indexing We manually select
image-object pairs on the top-down map for localizing “an
object X near the image Y”.

• Area-Object cross-modal indexing We access the region
and object metadata (e.g. bounding boxes and semantics)
from the Matterport3D dataset to automatically generate a
list of object-region pairs. This dataset is for localizing “an
object X in the area of Y”.

• Object-Sound cross-modal indexing We manually insert
several sounds of the same kind into a scene and select for
each sound location a nearby object for disambiguation. The
query is “a sound X near the object Y”.

In cross-modal goal navigation in Sec. 3.1, we randomly
sample starting pose in 10 scenes and treat the visual-object and
object-sound cross-modal goals in Sec. D.3 as navigation goals.

D.2. Multimodal Goal Navigation

Sound goal navigation. We first test AVLMaps in sound
goal navigation tasks. We collect 200 sequences of sound goals
in 10 different scenes. In each sequence, there are 4 sound
categories that require the robot to reach. The results are shown
in Tab. 2. We generate AudioCLIP [7] features with our audio
localization module and match all audio with the target sound
category in the embedding space, similar to a text-to-audio
retrieval setup. Then the agent plans a path to the audio position.
We tested different ranges of sound categories inserted into the
map. The full list of sound categories in each major class can be
found in the link2. The results show that our agent manages to
recognize sound goals and navigate with a 77.5% success rate.

Visual and object goals navigation. We then test AVLMaps
with visual and object goal navigation tasks. The agent is given

2https://github.com/karolpiczak/ESC-50

https://github.com/karolpiczak/ESC-50


Tasks
No. Subgoals in a Row Independent

1 2 3 4 Subgoals

Domestic Sound 59.5 33.0 15.5 7.0 62.5
+ Human Sound 69.5 47.0 36.5 23.0 72.38
+ Animal Sound 74.5 58.5 45.5 33.0 77.5

Table 2: The success rate (%) of sound goal navigation with AVLMaps.

an image and two object categories in the language in one
sequence of tasks and asked to navigate to the image goal and
two object goals in sequence. In 200 sequences of tasks in 10
scenes, the success rate is reported in Tab. 3. The results show
that our method enables the agent to navigate to goals from
different modalities.

Tasks
No. Subgoals in a Row Independent

1 2 3 Subgoals

AVLMaps (Ours) 71.5 40.5 25.0 47.4

Table 3: The success rate (%) of multimodal goal navigation with
AVLMaps. The agent is required to navigate to one visual goal, and
two object goals in sequence.

D.3. Cross-Modal Goal Indexing

When we refer to a goal with language, it is likely that the
goal can be found in more than one place in the environment. A
major strength of our method is that it can disambiguate goals
with multimodal information. In this experiment, we will show
the cross-modal goal reasoning capability of AVLMaps.

Area-Object goal indexing. In this setup, we use an area
description to disambiguate the object goal. We collected 100
indexing tasks in 10 scenes. Each task consists of an object
category and a region category (e.g. “living room”, “kitchen”,
“dining room”, “bathroom” etc.). The agent needs to predict
the correct object location which is inside the region. The top-1
recall with different distance tolerance is reported in Tab. 4.
We can notice that VLMaps [8] struggles to find the goal in the
correct region because VLMaps integrates visual-language fea-
tures from the encoder fine-tuned on the instance segmentation
dataset, improving its segmentation performance on common
objects while dropping its ability to recognize more general
concepts like regions. In contrast, ConceptFusion integrates
pre-trained CLIP features into the map without fine-tuning,
enabling it to recognize general concepts including regions, and
thus the indexing results are improved.

Object-Sound goal indexing. In this setting, we use object
goals to disambiguate sound goals. We collected 119 indexing
tasks, each of which consist of a sound category and a nearby
object category. Each sound category in a scene can be heard at
more than 1 location, introducing ambiguity to the localization
scenario. The recall is reported in Tab. 5. With the combination
of object and audio localization modules, our method largely

Method
Recall@1 (%) Avg. min.

distance (m)<0.5m <1m <1.5m <2m

baseline
(VLMaps)

5.56 7.78 13.33 17.78 8.22

+ ConceptFusion 12.22 13.33 16.67 21.11 7.60
+ CLIP sparse map

(Ours)
15.56 24.44 31.11 35.56 6.17

+ GT region map 37.78 44.44 55.56 61.11 2.62

Table 4: The recall (%) of area-object cross-modal indexing.

increases the recall rate for localizing the correct sound goal
position in ambiguous scenarios.

Method
Recall@1 (%) Avg. min.

distance (m)<0.5m <1m <1.5m <2m

baseline
(wav2clip)

8.40 10.08 10.92 14.29 8.52

baseline
(AudioCLIP)

26.05 35.29 36.97 42.01 5.04

VLMaps +
wav2clip

24.37 30.25 33.61 38.66 6.27

VLMaps +
AudioCLIP

(Ours)
53.78 65.55 67.23 70.59 2.74

Table 5: The recall (%) of object-sound cross-modal indexing.

Visual-Object goal indexing. In visual-object goal indexing
tasks, visual clues are used to resolve ambiguity. Given an
object category and an image, our method can localize the
correct object near the image position with over 60% of recall
for 0.5 meters distance tolerance, as is shown in Tab. 6.

Method
Recall@1 (%) Avg. min.

distance (m)<0.5m <1m <1.5m <2m

VLMaps w/o
vis loc

7.55 9.43 11.32 11.94 11.22

VLMaps w/
vis loc
(Ours)

62.26 66.67 70.44 72.32 3.11

Table 6: The recall (%) of visual-object cross-modal indexing.

D.4. Real World Experiment

Robot setup. In the real-world experiment setting, we use
a mobile robot equipped with a Ridgeback omnidirectional
platform from Clearpath Robotics as the mobile base, and a
Panda manipulator from Franka Emika. We mount a RealSense
D435 RGB-D camera at the gripper of the Panda manipulator.
During the mapping, we run a LiDAR localizer to provide the
odometry for the robot base and derive the camera pose through
the forward kinematics of the robot arm.



Figure 4. Real-world experiments are conducted in a room with
multiple ambiguous goals such as tables, chairs, backpacks, and paper
boxes (left). We leverage dense SLAM techniques to build a 3D
reconstruction of the scene from RGB-D camera data into which we
anchor features from multiple foundation models (right).

Environment setup. We choose a room with multiple
ambiguous goals such as tables, chairs, paper boxes, counters,
and backpacks which are shown in Fig. 4. We control the
robot in this environment and record RGB-D video. Then we
artificially add sounds to the RGB-D video when the robot
moves to certain locations. The sound locations are shown in
Fig. 5. After collecting the data, we run the AVLMaps mapping
offline. For navigation tasks, we provide the AVLMaps
and the language instruction as input. The robot parses the
instruction (Sec. 2.3) and executes the generated python code
for goal indexing and planning. We use the ROS navigation
package [14] for global and local planning. To avoid including
noise proceeding from the own robots operation, we preprocess
sound inputs with background noise substraction.

glass breaking church bell

keyboard typing

crying babydoor knock

dog barking

coughing

Figure 5. We artificially insert sounds with different semantics at
locations shown in the image. Different sounds are played when the
robot moves to these locations during mapping. Sounds are sampled
from the ESC-50 dataset.

Multimodal Spatial Goal Reasoning and Navigation with
Natural Language. We design 20 language-based multimodal
navigation tasks, asking the robot to navigate to sounds, images,
and objects. We report an overall success rate of 50%. We also
design an evaluation consisting of 10 multimodal spatial goals.

The agent needs to reason across object, sound, image and spa-
tial concepts. An example is “navigate in between the backpack
near the sound of glass breaking and {the image of a fridge}”. In
the end, 6 out of 10 tasks were successfully finished. We show
in Fig. 6 the process of resolving ambiguities in the scene. There
are different ambiguous objects in the scenes including paper
boxes, backpacks, shelves, tables, chairs, and plates. The first
and the second columns in Fig. 6 show the ground truth positions
of the target objects and sounds. The third and fourth columns
show that AVLMaps can accurately localize objects, sounds,
and visual goals in the form of 3D heatmaps. The final column
shows that our method can correctly narrow down targets in
spite of object ambiguities. We can observe from the figure
that AVLMaps can accurately localize ambiguous concept with
language, audio and image. We observe that the failures come
from the composition of the imperfection of different modules.
For example, the object localization module (e.g. VLMaps) fails
to recognize rare objects like various toys. It also mistakes some
shelves for chairs. Similar failures happen in audio localization
module. In the second row and the fourth column in Fig. 6,
the church bell sound should be at the top-right corner but the
module also gives high score for the sound heard at bottom-left.
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Figure 6. Visualization of example heatmaps in AVLMaps for
multimodal goal reasoning for ambiguous object goals. The first
column shows the positions of ambiguous objects (green bounding
boxes) and the location of a sound (the icon of a speaker) or an image
(the icon of a camera). The second column shows the zoom-in view of
ambiguous objects in the scene. The third column shows the predicted
3D heatmap for the object. The fourth column shows the heatmap for
the extra modality. The final column shows the fused heatmap after
cross-modal reasoning. Sounds are artificially inserted into the scene
for benchmarking and evaluation. The locations of sounds are not
sound source locations but the places where the sounds were heard.
The heatmap is shown in JET color scheme (red means the highest
score and blue means the lowest score).
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