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Abstract

In this work, we propose a novel method, LLM-Planner,
that harnesses the power of large language models to do
few-shot planning for embodied agents. We further propose
a simple but effective way to enhance LLMs with physical
grounding to generate and update plans that are grounded
in the current environment. Experiments on the ALFRED
dataset show that our method can achieve very competi-
tive few-shot performance: Despite using less than 0.5%
of paired training data, LLM-Planner achieves competitive
performance with recent baselines that are trained using the
full training data. Existing methods can barely complete
any task successfully under the same few-shot setting. Our
work opens the door for developing versatile and sample-
efficient embodied agents that can quickly learn many tasks.

1. Introduction

Contemporary language-driven agents still require a
large number of labeled examples (pairs of language in-
structions and gold trajectories) to learn each task, which is
highly costly and hinders the development of truly versatile
agents [2, 6, 7, 10, 11, 14, 16, 17, 19, 22, 24]. Recently, an ar-
ray of seminal work has shown the remarkable potential of
large language models (LLMs) such as GPT-3 [4] as a few-
shot planner for embodied AI agents [1, 8, 12, 20]. Agents
equipped with LLM-based planners have started to show the
ability to learn a new task with a few training examples.

While showing great promises as proof of concepts, ex-
isting work still presents significant limitations that may
prevent larger-scale applications beyond their limited eval-
uation setting. As an example, SayCan [1], one of the
pioneering work on using LLMs for embodied instruction
following, is evaluated on two environments with only 15
object types. The agent is assumed to be able to enu-
merate all admissible skills (i.e., [action, object] pairs) up
front so it can use an LLM to rank the skills. This as-
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Figure 1. A conceptual illustration of LLM-Planner.

sumption could break easily in partially-observable envi-
ronments when deploying an agent to new environments.
The cost could also quickly pile up in more complex envi-
ronments with more objects because the agent needs to call
the LLM to evaluate every admissible skill at every step; ef-
ficiency deteriorates at the same time. Finally, most existing
work [1,8,13,20] uses LLMs to generate a single static plan
from the language instruction and then executes on the en-
tire plan. However, the optimal plan for the same language
instruction is dependent on the environment; different envi-
ronments may need different plans (Figure 1).

We propose LLM-Planner, an LLM-based planner for
embodied instruction following. An important design
goal is to be able to directly generate plans in diverse,
partially-observable environments, and can dynamically re-
plan based on perceptions from the environment. While
most existing work [1, 8, 9, 13, 20] is evaluated under a
limited setting (e.g., limited/known environments, short-
horizon tasks, or simple environments with a small number
of objects), we evaluate LLM-Planner on ALFRED [19],
a large-scale dataset with diverse partially-observable envi-
ronments and a wide variety of tasks and objects. Using less
than 0.5% of paired training data, LLM-Planner achieves
competitive performance compared with HLSM [3] and
outperforms multiple other baselines, which are trained



with the full training set. Under the same few-shot setting,
existing methods can barely complete any task successfully.

2. LLM-Planner

We adopt hierarchical planning models (e.g., [18, 23]),
which consist of a high-level planner and a low-level plan-
ner. We use LLMs to generate high-level plans (HLPs), i.e.,
a sequence of subgoals (e.g., [Navigation potato, Pickup potato,
Navigation microwave, ...]) that the agent needs to achieve,
in the specified order, to accomplish the final goal speci-
fied by the language instruction. The low-level planner then
maps each subgoal into a sequence of primitive actions for
achieving that subgoal in the current environment and state.

To adapt LLMs such as GPT-3 as high-level planners,
the first step is to design an appropriate prompt to guide
them to generate high-level plans. We identify core com-
ponents of the prompt and systemically compare different
design choices under the true few-shot setting based on
leave-one-out cross-validation (LOOCV). The prompt be-
gins with an intuitive explanation of the task and the list
of allowable high-level actions. It is then followed by the
in-context examples which are the most similar samples in
training dataset to the current test example, selected by the
k-nearest-neighbor (kNN) retriever. With all the above de-
signs, we have obtained the static version of LLM-Planner,
which can already generate reasonable HLPs.

Furthermore, we equip LLM-Planner with a grounded
re-planning capability to dynamically update the HLP dur-
ing the course of completing a task. This is in contrast with
most existing work that only predicts a fixed HLP up front
and sticks to that no matter what happens during the exe-
cution. To this end, we add the subgoals that have been
completed and the list of objects observed by object detec-
tor so far in the prompt. We also add logit biases to these
observed objects so LLM-Planner can prioritize producing
a plan with those objects if they are relevant for the task.
We trigger re-planning under either of two conditions: 1)
the agent fails to execute an action, or 2) after a fixed num-
ber of time steps.

3. Experiments and Results

We use the same evaluation setup and metrics provided
by ALFRED [19]. For the low-level controller, we use the
HLSM [3]’s low-level controller. We also implement Say-
Can [1] in ALFRED to compare with our method. To make
it possible for SayCan to work in the complex, partially-
observable environments in ALFRED, we give it an unfair
competitive advantage—it knows all the objects and affor-
dances in the current environment a priori to compile the
list of skills. The main results with comparison to other
methods on ALFRED [19] are shown in Table 1. We find
that LLM-Planner’s few-shot performance is competitive to

Model Test Unseen Valid Unseen
SR GC SR GC

Full-data setting: 21,023 (instruction, trajectory) pairs

Goal instruction only
HLSM [3] 20.27 27.24 18.28 31.24
Step-by-step instructions
M-TRACK [21] 16.29 22.60 17.29 28.98
FILM [15] 27.80 38.52 – –

Few-shot setting: 100 (instruction, high-level plan) pairs

Goal instruction only
LLM-Planner (Static) + HLSM 11.58 18.47 11.10 22.44
LLM-Planner + HLSM 13.41 22.89 12.92 25.35
Step-by-step instructions
HLSM [3] 0.61 3.72 0.00 1.86
FILM [15] 0.20 6.71 0.00 9.65
SayCan [1] - - 9.88 22.54
LLM-Planner (Static) + HLSM 15.83 20.99 14.26 26.12
LLM-Planner + HLSM 16.42 23.37 15.36 29.88

Table 1. Main results on the ALFRED dataset. ”(Static)” means
the static planning setting, otherwise it is the default dynamic
setting with grounded re-planning. SR: success rate, GC: goal-
condition success rate. Both metrics are from ALFRED [19].

the original HLSM, and outperforms a recent baseline such
as M-TRACK, despite using less than 0.5% of paired train-
ing data. On the other hand, when trained using the same
100 examples (i.e., re-training HLSM’s high-level planner),
HLSM (and FILM as well) can barely complete any task
successfully. Furthermore, the results show that SayCan
still largely underperforms LLM-Planner despite the access
to the full environment information. Another significant dif-
ference is cost and efficiency. Because of SayCan’s rank-
ing nature, it needs to call the LLM many more times than
a generative model like LLM-Planner: LLM-Planner calls
GPT-3 avg. 7 times per task and SayCan calls it 22 times,
even with oracle knowledge of the current environment to
shrink the skill list. Lastly, we see a considerable improve-
ment from grounded re-planning over static planning, espe-
cially in the goal instruction only setting, where it improves
1.83% SR in the unseen test split. This confirms the effec-
tiveness of the grounded re-planning. But we also note that
there is still a large room for further improvement.

4. Conclusion and Future Work
Our work can dramatically reduce the amount of human

annotations needed for learning the instruction following
task. Furthermore, it opens a new door for developing ver-
satile and extremely sample-efficient embodied agents by
harnessing the power of large language models and enhanc-
ing them with physical grounding. Promising future direc-
tions include exploring other LLMs such as PaLM [5], bet-
ter prompt design, and more advanced methods for ground-
ing and dynamic re-planning.
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