
LLM-Planner: Few-Shot Grounded Planning for Embodied Agents
with Large Language Models

Chan Hee Song*‡ Jiaman Wu‡ Clayton Washington‡ Brian M. Sadler¶

Wei-Lun Chao‡ Yu Su‡

Abstract

In this work, we propose a novel method, LLM-Planner,
that harnesses the power of large language models to do
few-shot planning for embodied agents. We further propose
a simple but effective way to enhance LLMs with physical
grounding to generate and update plans that are grounded
in the current environment. Experiments on the ALFRED
dataset show that our method can achieve very competi-
tive few-shot performance: Despite using less than 0.5%
of paired training data, LLM-Planner achieves competitive
performance with recent baselines that are trained using the
full training data. Existing methods can barely complete
any task successfully under the same few-shot setting. Our
work opens the door for developing versatile and sample-
efficient embodied agents that can quickly learn many tasks.

1. Introduction

Contemporary language-driven agents still require a
large number of labeled examples (pairs of language in-
structions and gold trajectories) to learn each task, which is
highly costly and hinders the development of truly versatile
agents [2, 6, 7, 10, 11, 14, 16, 17, 19, 22, 24]. Recently, an ar-
ray of seminal work has shown the remarkable potential of
large language models (LLMs) such as GPT-3 [4] as a few-
shot planner for embodied AI agents [1, 8, 12, 20]. Agents
equipped with LLM-based planners have started to show the
ability to learn a new task with a few training examples.

While showing great promises as proof of concepts, ex-
isting work still presents significant limitations that may
prevent larger-scale applications beyond their limited eval-
uation setting. As an example, SayCan [1], one of the
pioneering work on using LLMs for embodied instruction
following, is evaluated on two environments with only 15
object types. The agent is assumed to be able to enu-
merate all admissible skills (i.e., [action, object] pairs) up
front so it can use an LLM to rank the skills. This as-

*Corresponding author: song.1855@osu.edu
‡The Ohio State University
¶DEVCOM ARL

LLM
Planner

Cook a potato and put it into the recycle bin.

Navigation potato, Pickup potato, 
…., PutObject potato recyclebin

I cannot find a potato, but I saw a fridge.

Navigation fridge, OpenObject fridge, 
Pickup potato, CloseObject fridge, …., 

PutObject potato recyclebin

I cannot find a recycle bin, but I saw a 
garbage can.

Navigation garbagecan, 
PutObject potato garbagecan

t = 0

Embodied Agent &
Environment

t = 5

t = 20

Instruction High-level Plan Observation

Figure 1. A conceptual illustration of LLM-Planner.

sumption could break easily in partially-observable envi-
ronments when deploying an agent to new environments.
The cost could also quickly pile up in more complex envi-
ronments with more objects because the agent needs to call
the LLM to evaluate every admissible skill at every step; ef-
ficiency deteriorates at the same time. Finally, most existing
work [1,8,13,20] uses LLMs to generate a single static plan
from the language instruction and then executes on the en-
tire plan. However, the optimal plan for the same language
instruction is dependent on the environment; different envi-
ronments may need different plans (Figure 1).

We propose LLM-Planner, an LLM-based planner for
embodied instruction following. An important design
goal is to be able to directly generate plans in diverse,
partially-observable environments, and can dynamically re-
plan based on perceptions from the environment. While
most existing work [1, 8, 9, 13, 20] is evaluated under a
limited setting (e.g., limited/known environments, short-
horizon tasks, or simple environments with a small number
of objects), we evaluate LLM-Planner on ALFRED [19],
a large-scale dataset with diverse partially-observable envi-
ronments and a wide variety of tasks and objects. Using less
than 0.5% of paired training data, LLM-Planner achieves
competitive performance compared with HLSM [3] and
outperforms multiple other baselines, which are trained



with the full training set. Under the same few-shot setting,
existing methods can barely complete any task successfully.

2. LLM-Planner

We adopt hierarchical planning models (e.g., [18, 23]),
which consist of a high-level planner and a low-level plan-
ner. We use LLMs to generate high-level plans (HLPs), i.e.,
a sequence of subgoals (e.g., [Navigation potato, Pickup potato,
Navigation microwave, ...]) that the agent needs to achieve,
in the specified order, to accomplish the final goal speci-
fied by the language instruction. The low-level planner then
maps each subgoal into a sequence of primitive actions for
achieving that subgoal in the current environment and state.

To adapt LLMs such as GPT-3 as high-level planners,
the first step is to design an appropriate prompt to guide
them to generate high-level plans. We identify core com-
ponents of the prompt and systemically compare different
design choices under the true few-shot setting based on
leave-one-out cross-validation (LOOCV). The prompt be-
gins with an intuitive explanation of the task and the list
of allowable high-level actions. It is then followed by the
in-context examples which are the most similar samples in
training dataset to the current test example, selected by the
k-nearest-neighbor (kNN) retriever. With all the above de-
signs, we have obtained the static version of LLM-Planner,
which can already generate reasonable HLPs.

Furthermore, we equip LLM-Planner with a grounded
re-planning capability to dynamically update the HLP dur-
ing the course of completing a task. This is in contrast with
most existing work that only predicts a fixed HLP up front
and sticks to that no matter what happens during the exe-
cution. To this end, we add the subgoals that have been
completed and the list of objects observed by object detec-
tor so far in the prompt. We also add logit biases to these
observed objects so LLM-Planner can prioritize producing
a plan with those objects if they are relevant for the task.
We trigger re-planning under either of two conditions: 1)
the agent fails to execute an action, or 2) after a fixed num-
ber of time steps.

3. Experiments and Results

We use the same evaluation setup and metrics provided
by ALFRED [19]. For the low-level controller, we use the
HLSM [3]’s low-level controller. We also implement Say-
Can [1] in ALFRED to compare with our method. To make
it possible for SayCan to work in the complex, partially-
observable environments in ALFRED, we give it an unfair
competitive advantage—it knows all the objects and affor-
dances in the current environment a priori to compile the
list of skills. The main results with comparison to other
methods on ALFRED [19] are shown in Table 1. We find
that LLM-Planner’s few-shot performance is competitive to

Model Test Unseen Valid Unseen
SR GC SR GC

Full-data setting: 21,023 (instruction, trajectory) pairs

Goal instruction only
HLSM [3] 20.27 27.24 18.28 31.24
Step-by-step instructions
M-TRACK [21] 16.29 22.60 17.29 28.98
FILM [15] 27.80 38.52 – –

Few-shot setting: 100 (instruction, high-level plan) pairs

Goal instruction only
LLM-Planner (Static) + HLSM 11.58 18.47 11.10 22.44
LLM-Planner + HLSM 13.41 22.89 12.92 25.35
Step-by-step instructions
HLSM [3] 0.61 3.72 0.00 1.86
FILM [15] 0.20 6.71 0.00 9.65
SayCan [1] - - 9.88 22.54
LLM-Planner (Static) + HLSM 15.83 20.99 14.26 26.12
LLM-Planner + HLSM 16.42 23.37 15.36 29.88

Table 1. Main results on the ALFRED dataset. ”(Static)” means
the static planning setting, otherwise it is the default dynamic
setting with grounded re-planning. SR: success rate, GC: goal-
condition success rate. Both metrics are from ALFRED [19].

the original HLSM, and outperforms a recent baseline such
as M-TRACK, despite using less than 0.5% of paired train-
ing data. On the other hand, when trained using the same
100 examples (i.e., re-training HLSM’s high-level planner),
HLSM (and FILM as well) can barely complete any task
successfully. Furthermore, the results show that SayCan
still largely underperforms LLM-Planner despite the access
to the full environment information. Another significant dif-
ference is cost and efficiency. Because of SayCan’s rank-
ing nature, it needs to call the LLM many more times than
a generative model like LLM-Planner: LLM-Planner calls
GPT-3 avg. 7 times per task and SayCan calls it 22 times,
even with oracle knowledge of the current environment to
shrink the skill list. Lastly, we see a considerable improve-
ment from grounded re-planning over static planning, espe-
cially in the goal instruction only setting, where it improves
1.83% SR in the unseen test split. This confirms the effec-
tiveness of the grounded re-planning. But we also note that
there is still a large room for further improvement.

4. Conclusion and Future Work
Our work can dramatically reduce the amount of human

annotations needed for learning the instruction following
task. Furthermore, it opens a new door for developing ver-
satile and extremely sample-efficient embodied agents by
harnessing the power of large language models and enhanc-
ing them with physical grounding. Promising future direc-
tions include exploring other LLMs such as PaLM [5], bet-
ter prompt design, and more advanced methods for ground-
ing and dynamic re-planning.



References

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Cheb-
otar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog,
Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Ir-
pan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu,
Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao,
Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Ser-
manet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vin-
cent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. Do as i can and not as i
say: Grounding language in robotic affordances. In arXiv
preprint arXiv:2204.01691, 2022. 1, 2

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sunderhauf, Ian Reid, Stephen Gould, and
Anton Van Den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real
environments. In CVPR, pages 3674–3683, 2018. 1

[3] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and
Yoav Artzi. A persistent spatial semantic representation for
high-level natural language instruction execution. In Confer-
ence on Robot Learning, pages 706–717. PMLR, 2022. 1,
2

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020. 1

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022. 2

[6] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,
Jacob Andreas, Louis-Philippe Morency, Taylor Berg-
Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.
Speaker-follower models for vision-and-language naviga-
tion. In Neural Information Processing Systems (NeurIPS),
2018. 1

[7] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-
Opazo, and Stephen Gould. A recurrent vision-and-language
bert for navigation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1643–1653, June 2021. 1

[8] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language models as zero-shot planners: Ex-

tracting actionable knowledge for embodied agents. arXiv
preprint arXiv:2201.07207, 2022. 1

[9] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor
Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown,
Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman,
and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In arXiv preprint
arXiv:2207.05608, 2022. 1

[10] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and
Jason Baldridge. Room-Across-Room: Multilingual vision-
and-language navigation with dense spatiotemporal ground-
ing. In Conference on Empirical Methods for Natural Lan-
guage Processing (EMNLP), 2020. 1

[11] Xiujun Li, Chunyuan Li, Qiaolin Xia, Yonatan Bisk, Asli
Celikyilmaz, Jianfeng Gao, Noah A. Smith, and Yejin Choi.
Robust navigation with language pretraining and stochastic
sampling. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1494–1499, Hong Kong,
China, Nov. 2019. Association for Computational Linguis-
tics. 1

[12] Xiaotian Liu, Hector Palacios, and Christian Muise. A plan-
ning based neural-symbolic approach for embodied instruc-
tion following. Interactions, 9(8):17, 2022. 1

[13] Yujie Lu, Weixi Feng, Wanrong Zhu, Wenda Xu, Xin Eric
Wang, Miguel Eckstein, and William Yang Wang. Neuro-
symbolic procedural planning with commonsense prompt-
ing, 2022. 1

[14] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter An-
derson, Devi Parikh, and Dhruv Batra. Improving vision-
and-language navigation with image-text pairs from the web.
In Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part
VI, pages 259–274, 2020. 1

[15] So Yeon Min, Devendra Singh Chaplot, Pradeep Kumar
Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov. FILM:
Following instructions in language with modular methods.
In International Conference on Learning Representations,
2022. 2

[16] Alexander Pashevich, Cordelia Schmid, and Chen Sun.
Episodic Transformer for Vision-and-Language Navigation.
In ICCV, 2021. 1

[17] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu
Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:
Simulating household activities via programs. In 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8494–8502, 2018. 1

[18] Pratyusha Sharma, Antonio Torralba, and Jacob Andreas.
Skill induction and planning with latent language. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1713–1726, Dublin, Ireland, May 2022. Association
for Computational Linguistics. 2

[19] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,



and Dieter Fox. ALFRED: A Benchmark for Interpreting
Grounded Instructions for Everyday Tasks. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 1, 2

[20] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal,
Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thoma-
son, and Animesh Garg. ProgPrompt: Generating situated
robot task plans using large language models. arXiv preprint
arXiv:2209.11302, 2022. 1

[21] Chan Hee Song, Jihyung Kil, Tai-Yu Pan, Brian M. Sadler,
Wei-Lun Chao, and Yu Su. One step at a time: Long-horizon
vision-and-language navigation with milestones. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 15482–15491, June
2022. 2

[22] Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind
Thattai, and Gaurav Sukhatme. Embodied bert: A trans-
former model for embodied, language-guided visual task
completion, 2021. 1

[23] Richard S Sutton, Doina Precup, and Satinder Singh. Be-
tween mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999. 2

[24] Yichi Zhang and Joyce Chai. Hierarchical task learning
from language instructions with unified transformers and
self-monitoring. In Findings of the Association for Compu-
tational Linguistics: ACL-IJCNLP 2021, pages 4202–4213,
Online, Aug. 2021. Association for Computational Linguis-
tics. 1


	. Introduction
	. LLM-Planner
	. Experiments and Results
	. Conclusion and Future Work

