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1. Introduction
Modern robots come in various shapes and sizes, and use

different sensor suites (e.g., different cameras with different
camera parameters) to observe their environment. By con-
trast, when training embodied agents (i.e., virtual robots)
in simulation, these differences are typically ignored and a
single robot embodiment (height, radius, camera parame-
ters, etc.) is used. As a result, behavior policies learned in
such simulations only work for the fixed embodiment used
in training, and generalize poorly when even minor changes
to the robot’s embodiment are introduced, such as chang-
ing the robot’s height or camera field-of-view. However,
such variations are inevitable as new robots are developed
or existing robots are updated and modified for new applica-
tions. How do we develop embodied agents that can adapt,
as needed, to new embodiments during deployment?

Recent work has proposed a number of techniques for
addressing this embodiment generalization challenge [3, 8,
11,14]. One line of work trains “universal” navigation poli-
cies that are conditioned on a learned robot embedding vec-
tor [11]. Alternatively, Shah et al. [8] train a navigation
policy using data from multiple robot embodiments by con-
ditioning the policy on past observations (used to infer a
robot’s embodiment) and using a normalized action space
(to generalize actions across embodiments).

This work studies a simpler alternative: embodiment
randomization. Akin to domain randomization [10],
in embodiment randomization the robot configuration
is randomly sampled at the beginning of each training
episode. In simulation, modifying a robot’s embodiment is
trivial. Thus, embodiment randomization is an inexpensive
and intuitive technique for addressing the embodiment
generalization challenge.

We empirically investigate embodiment randomization
using the image-goal navigation (ImageNav) task [15]. We
observe that, on this task, policies trained using a fixed em-
bodiment catastrophically fail to generalize to new robot
configurations. However, with embodiment randomization,
agents recover a substantial portion of this lost performance.

Furthermore, we discover that policies trained with em-
bodiment randomization implicitly learn to perform system

identification. Specifically, we find that many (but not all)
configuration parameters can be predicted from intermedi-
ate representations within agents trained with embodiment
randomization, allowing these agents to adapt to new em-
bodiments during deployment. Our findings suggest that
embodiment randomization is a simple but effective method
for training navigation agents that are generalizable to new
embodiments zero-shot.

2. Embodiment Randomization

Agent
Property

Train Embodiment Eval Embodiment

LoCoBot Multi-Embodiment In-Dist. Out-of-Dist.

Height (m) 0.61 [0.61, 1, 1.5] [0.75, 1.25] [0.25, 2]
Radius (m) 0.18 [0.1, 0.18, 0.3] [0.15, 0.25] [0.05, 0.4]

Step Size (m) 0.2 [0.1, 0.2, 0.3] [0.15, 0.25] [0.05, 0.4]
Turn Angle (deg.) 30 [15, 30, 45, 60] [22.5, 37.5, 52.5] [7.5, 72]
Camera Tilt (deg.) 0 [-30, -15, 0, 15, 30] [-22.5, 22.5] [-45, 45]

Camera FOV (deg.) 55 [55, 90, 120] [75, 105] [30, 150]

Table 1. Agent parameters used for embodiment randomization.

We use embodiment randomization to train a single pol-
icy network that can perform well across a range of em-
bodiment configurations. In training, an agent embodiment
is sampled at the start of every episode from the combina-
torial space of configurations shown in Table 1 column 3.
Specifically, we vary the robot’s height, radius, step size,
turn angle, camera tilt, and camera field-of-view (FoV) to
simulate different robot embodiments.

3. Experimental Setup
Image-Goal Navigation (ImageNav). In ImageNav [15],
an agent receives RGB-D observations, and is tasked with
navigating from a randomly sampled initial position to a
goal location. The goal is represented as an RGB image
constructed from the goal location. We consider naviga-
tion agents that use four discrete actions: STEP FORWARD,
TURN LEFT, TURN RIGHT, and STOP. Agents are suc-
cessful if they call STOP within 1m of the goal. We report
two navigation metrics: Success Rate (SR ↑) and Success
weighted by Path Length (SPL ↑) [1].

Navigation Agent. We adapt the agent architecture from
OVRL-v2 [13]. Specifically, image observations are ren-
dered (by a simulator) at a 640x480 resolution, then
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dowsampled to 160x120, which is used as input to the
policy. Our policy processes RGB observations using a
pre-trained ViT from [13] and depth observations using a
randomly-initialized ResNet-18 [4]. The encoded sensor
data is projected using a linear layer, and consumed by a
recurrent network (a GRU [2]) to predict actions. We train
agents with reinforcement learning using DD-PPO [12] for
1 billion frames of experience in the Habitat simulator [7,9]
using 800 training scenes from HM3D [6].

4. Experimental Findings
We compare the performance of an agent trained with

embodiment randomization to an agent trained with a sin-
gle embodiment. The single embodiment agent uses the Lo-
CoBot specifications [5] (Table 1 column 2), and the multi-
embodiment agent uses the parameters specified in Table 1
column 3. The multi-embodiment setting includes the Lo-
CoBot parameters to evaluate whether simply expanding
the space of robot configurations used during training can
be beneficial for generalization to novel embodiments. We
evaluate both agents using 3 embodiments at test-time: (a)
LoCoBot embodiment, (b) embodiments in-distribution to
the multi-embodiment training parameters (Table 1 col-
umn 4), and (c) embodiments out-of-distribution to the
multi-embodiment training parameters (Table 1 column 5).

Train
Embodiment

Eval Embodiment

LoCoBot In-Dist. Out-of-Dist.

SR ↑ SPL ↑ SR ↑ SPL ↑ SR ↑ SPL ↑
LoCoBot 0.59 0.38 0.11 0.06 0.02 0.01

Multi-Embodiment 0.55 0.34 0.60 0.41 0.12 0.06

Table 2. ImageNav evaluation performance for single and multi-
embodiment trained policies.

In Table 2, we observe that the policy trained with em-
bodiment randomization (row 2) generalizes to configura-
tions not seen during training and substantially outperforms
the single embodiment agent (row 1). Specifically, the sin-
gle embodiment agent fails to generalize to novel embodi-
ments – success rate drops from 59% to 11% (-48%) when
evaluating using the multi-embodiment in-distribution set-
ting. More significantly, success rate drops to 2% (-57%)
when evaluated in the multi-embodiment out-of-distribution
setting. This demonstrates that policies trained with a single
embodiment are sensitive to agent parameters, and the pol-
icy must be re-trained for each embodiment expected at test-
time. By contrast, the multi-embodiment policy is robust to
changes in embodiment parameters and achieves a strong
success rate of 60% SR when evaluated in-distribution, and
12% SR when evaluated out-of-distribution.

Next, we examine why the multi-embodiment policy
generalizes to new embodiments. Specifically, after policy
training, we train separate non-linear probes to predict em-

Figure 1. System identification accuracy for the multi-
embodiment policy, compared to random chance.

bodiment parameters such as camera FoV. Each probe con-
sists of a 2-layer MLP that takes as input the hidden state of
the GRU and outputs a predicted embodiment parameter.

From Figure 1, we see that the non-linear probes are able
to accurately predict many of the embodiment parameters,
suggesting that the agent performs implicit system identi-
fication. Particularly, parameters such as step size, turn
increment, and camera FoV are detected with high accu-
racy (90%, 85%, and 96% respectively). This suggests
that embodiment randomization can be a simple technique
for training embodiment-aware agents, which allow zero-
shot generalization to novel embodiments during deploy-
ment. Lastly, we note that radius is difficult to predict accu-
rately (34% accuracy, compared to 33% accuracy for ran-
dom chance). We hypothesize that to accurately predict the
radius, the agent would need to collide often with the en-
vironment. However, we found our policy mostly avoids
collisions, only colliding 3 times per episode on average.

Figure 2. System identification over steps of experience and
episode length for camera FOV and step size parameters.

We additionally examine the evolution of system iden-
tification. In Figure 2, we plot the system identification
accuracy for over steps of experience in training and over
episode length during evaluation. Certain parameters, such
as Camera FoV are detected early in the episode (within 20
steps), while step size is identified as the agent steps through
the environment, and can take more than 50 steps to detect.
More details can be found in Appendix A.

Overall, we find that embodiment randomization is a
simple, scalable, and effective method for training visual
navigation agents that can be zero-shot deployed to various
embodiments.
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A. Additional System Identification Results
Similar Viewpoints. We find that parameters such as height
and camera tilt are more difficult for the agent to infer. We
hypothesize that the lower system identification accuracy is
due to the fact that similar viewpoints may result from dif-
ferent configurations. We plot the confusion matrix between
the height and camera tilt parameters in Figure 3, and find
that there are multiple combinations of height and camera
tilt that result in high error. From Figure 4, we see that the
visual input for a 1m tall agent with a 30◦ camera tilt looks
similar to a 1.5m tall agent w/ 15◦ tilt.

Figure 3. Confusion Matrix

Height: 1m, Tilt: 30◦ Height: 1.5m, Tilt: 15◦

Figure 4. Viewpoints of different agent configurations from same
location

Evolution of System Identification. Agents trained with
randomized embodiments demonstrate an emergence of im-
plicit system identification. We plot the evolution of sys-
tem identification over steps of experience during training
in Figure 5. We see that many parameters exhibit a strong
system identification accuracy at the start of training– the

agent can correctly predict the camera FoV with an 80%
accuracy, and accuracy improves as the agent continues to
train. We again see that the agent has difficulty with accu-
rately identifying the camera tilt and height, likely due to
the viewpoint confusion.

Figure 5. We plot the system identification accuracy over steps of
experience during training. The dashed lines represent accuracy
for random chance. We see that for most parameters, the accuracy
increases as the agent learns from more training steps.

We further investigate the agent’s system identification
during an episode. We similarly see that the agent is able to
improve its system identification accuracy as the agent takes
more steps throughout the episode. This further suggests
that by training with multi-embodiments, the agent implic-
itly learns to identify its new embodiment during an episode
to adapt.

Figure 6. We plot the system identification accuracy over an
episode length. The dashed lines represent accuracy for random
chance. The system identification accuracy increases throughout
the episode.
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