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1. Introduction
Mobile manipulation tasks such as opening a door,

pulling open a drawer, or lifting a toilet lid require con-
strained motion of the end-effector under environmental and
task constraints. This, coupled with partial information in
novel environments, makes it challenging to employ classi-
cal motion planning approaches at test time. Our key insight
is to cast it as a learning problem to leverage past experience
of solving similar planning problems to directly predict mo-
tion plans for mobile manipulation tasks in novel situations
at test time.

2. Method
2.1. ArtObjSim: A Simulator for Everyday Artic-

ulated Objects in Real Scenes

We introduce ArtObjSim, a lightweight kinematic sim-
ulator for articulated objects placed in real scenes. ArtOb-
jSim is built upon the HM3D dataset [6]. HM3D consists
of 3D scans of real world environments. It offers both, re-
alistic image renderings from real scenes, and access to the
underlying 3D scene geometry. ArtObjSim is made pos-
sible through 2D annotations of articulation geometry on
images, which are then lifted to 3D to allow for a kinematic
simulation of the articulated objects. ArtObjSim is diverse
with 3758 object instances from across 97 scenes across 10
object categories and 4 articulation types. The dataset con-
tains kinematic simulations for each unique object instances
placed in real 3D scenes. Not only can we can simulate
the object (i.e. how the collision geometry will change as
the object articulates or how will the end-effector need to
move), we also have a sense of the surrounding 3D geom-
etry of the scene (i.e. the counter below the cabinet), and
can render out the RGB appearance of the object from mul-
tiple different views. To our knowledge, ArtObjSim is the
first simulator that enables a systematic large-scale study of
articulation of everyday objects in real world environments.

2.2. Representing and Decoding Motion Plans

Next, we introduce SeqIK+θ0, a fast and flexible repre-
sentation for motion plans. Our motion plan representation
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Figure 1. Sequential Inverse Kinematics (SeqIK+θ0). Given
an initial joint configuration (θ0), and a sequence of end-effector
pose waypoints, SeqIK+θ0 uses inverse kinematics (IK) to gen-
erate configurations that achieve the given end-effector waypoints.
IK for subsequent steps is warm-started with IK solutions from the
previous time step.

builds upon numerical inverse kinematics methods [5]. In-
verse kinematics (IK) is the process of obtaining joint an-
gles that get the end-effector to a given desired pose. Start-
ing from some initial joint angles, a numerical IK solver
iteratively updates the joint angles using the Jacobian of the
forward kinematics till a solution is found. As we are in-
terested in not one but a sequence of joint angles that track
the given end-effector trajectory, we sequentially solve a se-
quence of inverse kinematic problems by initializing the in-
verse kinematic solver for the tth time-step with the solution
from the (t−1)th time-step. We call this process, Sequential
Inverse Kinematics or SeqIK+θ0 (see Figure 1).

2.3. Predicting Motion Plans from Images

Finally, we learn a model to predict good initializations
θ0s for SeqIK+θ0 from RGB images. As there can be more
than one good θ0 for each image, we adopt a classification
approach. We work with a set of initializations Θ. We
train a function f(I, θ0) that classifies whether or not the
use of θ0 serves as a good initialization for SeqIK+θ0 to
achieve end-effector waypoints [. . . , wt, . . .] without col-
lisions. The initialization set Θ comes from the Carte-
sian product of a set of robot base positions in R3 and a
set of 10 arm configurations. The function f is realized
through a CNN with an ImageNet pre-trained ResNet-34
backbone [1]. Training labels are generated by decoding
each candidate θ0 into motion plans using SeqIK+θ0, and
testing them for end-effector pose deviation, self-collision,
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collision with the static environment, and collision with the
articulating object in ArtObjSim. We then render multiple
views for each articulated object to generate 40K images to
train the function f .

Our full method, Motion Plans to Articulate Objects
(MPAO), uses the learned function f to rank candidate ini-
tialization in Θ. We go down the ranked list, decode them
into motion plans using SeqIK+θ0, and return the first feasi-
ble plan (feasible meaning: accurately tracks the given way-
points and also doesn’t collide with self or with the geome-
try visible in the depth image).

3. Experiments
3.1. Motion Plan Representation

We evaluate the flexibility and decoding efficiency of
our proposed motion planning representation. More specif-
ically, given a 10 time-step end-effector trajectory and com-
plete collision geometry of the situation, this evaluation
measures the quality of the joint angle trajectory produced
by our method. SeqIK+θ0 is able find successful, collision-
free motion plans which adhere to the task constraints
99.1%, 63.3%, 71.8%, and 44.7% of the time for prismatic,
vertical hinge, horizontal down-hinge, horizontal up-hinge
objects respectively.

We also compared SeqIK+θ0 to two other class of meth-
ods: unconstrained and constrained motion planning, nei-
ther of which were able to find any successful solutions in a
tractable amount of time. For unconstrained motion plan-
ning, we used RRT-connect [4] to find a path between a start
and end joint configuration obtained using inverse kinemat-
ics. While this always found a path, without any constraint
on the intervening end-effector poses, the path would al-
ways violate the 1-DOF constraint imposed by articulated
object. For constrained motion planning, we used the pro-
jected state space method from the OMPL library [2, 3, 7].
It would find motion plans that conformed to the task con-
straint to some extent. However, the minimum translation
deviation was 0.02 m, much more than the tolerance level
needed in our tasks, resulting again in a 0% success rate. We
experimented with many hyper-parameter settings. Some
worked better than others, but none were able to return any
plans with less than 0.02 m translation deviation. In sum-
mary, SeqIK+θ0 is effective at producing joint angles that
conform to a given end-effector trajectory.

3.2. Motion Plan Prediction with Known Waypoints

Our next evaluation seeks to measure how quickly and
accurately, we can predict motion plans for articulated ob-
jects places in novel contexts as observed through RGBD
images. More specifically, given an RGBD image along
with an end-effector trajectory, we measure the success rate
of predicting motion plans as a function of planning time.
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Figure 2. Motion plan prediction success rate and speed. We
show success rate as a function of number of tries for the different
articulation types. Our method MPAO, achieves a higher success
rate and generates solutions faster than pure search or pure learn-
ing methods. We use 0.01 m translational and 0.01 rad rotational
tolerance on the end-effector pose to determine success.
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Figure 3. (a) One of the ten arm joint configurations from Θ used
for initialization. (b) Example of an object from the dataset (indi-
cated by the green marker), along with predictions for the config-
uration shown in (a) overlaid onto the image (warmer colors mean
higher score). (c, d, e) Visualizations of a successful execution.

We compare against other search schemes for finding
good θ0 for SeqIK+θ0. These baseline schemes employ
the same overall structure as our method (SeqIK+θ0 decod-
ing followed by filtering based on feasibility), but don’t use
any past experience (learned model) to rank initializations.
Random Order uses a random order to sort the set of ini-
tializations Θ for each object rather than using our learned
function f . IK initialization uses IK to find not only the
joint angles but also the base location for the first waypoint.
After this point, SeqIK+θ0 is used to obtain a trajectory with
a fixed base position, just as for our method. MPAO (No
neural network) (Ours) ranks initializations in Θ by their
success rate on the training set. Though this doesn’t use
the neural network, it is still data-driven in that it leverages
experience with past constrained motion planning problems
to output plans. We also compare to Imitation Learning, a
pure machine learning approach that uses imitation learning
to directly predict motion plans.
Results. Figure 2 presents the success rate for different
methods as a function of total number of solutions tried for
novel object instances in the test set. Across all articulation
types, our method dominates pure search baselines in suc-
cess rate and speed. For all categories, we are able to match
baseline performance with 10× fewer tries, and obtain more
than 25% absolute improvement in success rate for verti-
cal and horizontal down hinges. Our full method, MPAO,
boosts performance further and is able to effectively lever-
age the RGB observation to improve the ranking among so-
lutions. These experiments together establish the effective-
ness of our method at predicting good motion plans. Figure
3 visualizes a sample θ0, a heatmap of predictions by our
model f , and an example motion plan by MPAO. 1

1Full paper appearing at ICRA 2023: https://arjung128.github.io/mpao/
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