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Figure 1. Our Proposed Environment, Dataset and Universal Manipulation Policy.

1. INTRODUCTION

Door manipulation holds significant importance due to the
frequent need to open or close doors in various scenarios.
While previous works have focused primarily on interior
doors [10, 11], we aim to extend doors to a more general
setting, e.g., doors in windows, cars, safes, as illustrated in
Figure 1. In the above broad scenarios, the door manipu-
lation task covers doors with diverse types, geometries and
manipulation mechanisms, which poses a great challenge to
learn a universal door manipulation policy.

Due to the limited datasets and unrealistic simulation en-
vironments, previous works[1–3, 8, 13, 16] fail to achieve
good performance across various doors. In this work, we
build a novel door manipulation environment reflecting

*Equal contribution.
†Corresponding author.

different realistic door manipulation mechanisms, and fur-
ther equip this environment with a large-scale door dataset
covering 6 door categories with hundreds of door bodies
and handles, making up thousands of different door in-
stances as shown in Figure 1. Additionally, to better emu-
late real-world scenarios, we introduce a mobile robot as the
agent and use the partial and occluded point cloud as the ob-
servation, which are not considered in previous works while
possessing significance for real-world implementations. We
conduct detailed comparisons between our proposed envi-
ronment and dataset and others in Table 1, 2.

To learn a universal policy over diverse doors, we pro-
pose a novel framework disentangling the whole manip-
ulation process into three stages, and integrating them by
training in the reversed order of inference. Extensive exper-
iments validate the effectiveness of our designs and demon-
strate our framework’s strong performance. Code, data and
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Datasets Int. Win. Car. Saf. Sto. Ref.
B H CO B H CO B H CO B H CO B H CO B H CO

AKB-48 [7] - 9 - - - - - - - - - - - - - - - -
PartNet-Mobility [15] 26 22 26 3 1 3 - - - 30 14 30 155 - - 4 - -

GAPartNet [3] 14 11 14 - - - - - - 29 1 29 133 - - 4 - -
DoorGym [10] - 20 - - - - - - - - - - - - - - - -

Ours 57 96 5472 18 37 666 22 15 330 61 39 2379 160 8 1280 10 9 90

Table 1. Statistic Comparisons Between Previous Dataset and Ours. For category, Int., Win., Car., Saf., Sto., Ref. respectively denote
doors from Interior, Window, Car, Safe, StorageFurniture, Refrigerator. For asset number, B, H, CO indicate numbers of body, handle and
composited object assets with the two parts.

Env. Data. Mob. Latch. Part. Occ.
GAPartNet [3] P + A

W2A [8, 12, 13] P
RLAfford [4] P
PartManip [2] G
DoorGym [10] D
EnvAfford [14] P

Ours Ours

Table 2. Comparison between Our Environment and Others.
For simplicity, Data., Mob., Latch., Part. and Occ. respectively
denote Dataset, Mobile Robot Arm, Latching Mechanism, Partial
Observation and Occlusion in Observation. Besides, P, A, G and
D respectively denote PartNet-Mobility, AKB-48, GAPartNet and
DoorGym in Table 1.

videos are avaible on https://unidoormanip.github.io/.
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Figure 2. Our Pipeline For The Framework.

2. METHOD

As illustrated in Figure 2, we propose a novel framework
that disentangles door manipulation into three distinct but
related stages, each with a corresponding universal manip-
ulation policy. We leverage conditioned training to train
these policies, as they have inter-dependencies, and thus
they can be integrated into a unified universal policy. In
the first stage, we employ generalizable point-level visual
affordance [5, 6, 9, 17] to propose stable grasp poses. In the
second stage, we train a universal policy covering multiple
handle manipulation mechanisms in our proposed realistic
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Figure 3. Qualitative Results of Manipulation Sequence.

Task Pull Door

Method Train Test

GAPartNet [3]+GT 0.62 0.88 0.41 0.44 0.52 0.26
DoorGym [10] 0.56 0.72 0.61 0.41 0.19 0.23
PartManip [2] 0.47 0.61 0.54 0.34 0.42 0.19

VAT-MART [13] 0.59 0.62 0.57 0.43 0.51 0.25
Ours w/o disentangle. 0.44 0.88 0.20 0.19 0.05 0.22
Ours w/o condition. 0.77 0.31 0.58 0.51 0.54 0.33

Ours w/o state. 0.73 0.59 0.16 0.36 0.45 0.37
Ours w/o mobile. 0.87 0.60 0.00 0.43 0.50 0.81

Ours 0.99 0.91 0.81 0.72 0.75 0.89

Table 3. Quantitative Results of the Baselines and Ablations.

environment. In the third stage, we train a policy to open
doors with unlocked handles.

3. EXPERIMENTS
We conduct our experiments on the representative door ma-
nipulation tasks: pull door. The robot arm needs to pull the
door until the door joint angle θd is larger than a threshold
thredoor. Here, we set thredoor to be 45◦.

Figure 3 shows the whole manipulation sequence of our
universal manipulation. We also compare our method with
baselines and conduct an ablation study as shown in Ta-
ble 3. Qualitative and quantitative results demonstrate that
our universal policy can generalize over diverse categories,
geometries and manipulation mechanisms.

https://unidoormanip.github.io/
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