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Abstract

We introduce a novel no-RL, no-graph, no-odometry ap-

proach to visual navigation using feudal learning. This ar-

chitecture employs a hierarchy of agents that each see a

different aspect of the task and operate at different spatial

and temporal scales. We develop two unique modules in

this framework: (1) a memory proxy map learned in a

self-supervised manner that is used to record prior obser-

vations, and (2) a waypoint network that outputs interme-

diate subgoals by learning to imitate human waypoint se-

lection during local navigation. This waypoint network is

pre-trained using a dataset [1] of teleoperation sequences

made publicly available in our prior work. The resulting

feudal navigation network achieves SOTA performance on

the image goal navigation task.

Introduction Visual navigation is motivated by the idea

in psychology that humans navigate with cognitive maps

and graphs that preserve relative distances between land-

marks [2–5] without ever building detailed 3D maps of their

environment. In vision and robotics, these ideas have trans-

lated to the construction of topological graphs [6–10] and

metric maps [11, 12] based primarily on visual observa-

tions [13–16]. Moreover, visual navigation methods seek

new environment representations that are rich with seman-

tic information [17–20], easy to dynamically update [21–

23], and can be constructed faster and more compactly than

full 3D metric maps [24–27]. NRNS [9] goes a step further

by removing the reliance on simulators and reinforcement

learning to train functional visual navigation models.

Our approach uses no simulator and no RL, but goes one

step further by using no graphs and no odometry, resulting

in a lightweight, easy-to-train visual navigation framework.

We take inspiration from feudal learning [28–34], which

identifies workers and managers and allows for multiple

levels of hierarchy (ie. mid-level and high-level managers)

that each observe different aspects of the task and operate

at different temporal or spatial scales [35–37]. For naviga-

tion in unseen environments, this division of labor is ideal

to make the overall task more manageable [38–40]. Our

three tiered feudal navigation agent (FeudalNav) shown in

Figure 1 achieves SOTA performance in image-goal naviga-
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Figure 1. FeudalNav provides a no-graph, no-odometry, and no-

RL visual navigation agent for the image-goal task on previously

unseen environments. The hierarchy consists of: (1) a high-level

manager with a memory proxy map (MPM) that frames memory

as a latent space learning problem, (2) a mid-level manager way-

point network (WayNet) mimicking human teleoperation to guide

worker agent exploration, and (3) a low-level worker choosing ac-

tions in the environment based on the previous layers’ supervision.

tion tasks in previously unseen Habitat [41] environments.

Methods Key to our approach is representing traversed

environments with a learned latent map that acts as a mem-

ory proxy during navigation. We contrastively learn a latent

space that preserves the approximate distance between im-

ages to build an aggregate memory proxy map (MPM).

We learn this self-supervised latent space using a modified

implementation of SMoG [46] that combines instance level

contrastive learning and clustering methods. We add fur-

ther modifications to model training in order to conduct

navigation-aware, self-supervised contrastive learning on

our Landmark-Aware Visual Navigation (LAVN) Dataset

[1], which contains human waypoint-guided teleoperation

trajectories in multiple virtual and real world environments.

Instead of using typical constrastive learning data augmen-

tation methods, we rely on the variations introduced through

multiple camera views to learn robust image representa-

tions. During training, we build clusters for all trajectories

where observations are grouped based on Superglue [47]

robust keypoint matching. Then, we randomly sample pos-

itive pairs from each cluster to train the network.

As the agent navigates in novel environments, the high-

level manager sequentially places observation images in this



Path

Type
Model

Easy Medium Hard Average

Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

Straight

DDPPO (10M steps) * [42] 10.50 6.70 18.10 16.17 11.79 10.85 13.46 11.24

DDPPO (extra data + 50M steps) * [42] 36.30 34.93 35.70 33.98 5.94 6.33 25.98 25.08

DDPPO (extra data+100M steps) * [42] 43.20 38.54 36.40 34.89 7.44 7.20 29.01 26.88

BC w/ ResNet + Metric Map [9] 24.80 23.94 11.50 11.28 1.36 1.26 12.55 12.16

BC w/ ResNet + GRU [9] 34.90 33.43 17.60 17.05 6.08 5.93 19.53 18.80

NRNS w/ noise [9] 64.10 55.43 47.90 39.54 25.19 18.09 45.73 37.69

NRNS w/out noise [9] 68.00 61.62 49.10 44.56 23.82 18.28 46.97 41.49

NRNS + SLING [43] 85.3 74.4 66.8 49.3 41.1 28.8 64.4 50.8

OVRL + SLING [43] 71.2 54.1 60.3 44.4 43.0 29.1 58.2 42.5

FeudalNav (Ours) 82.60 74.95 71.00 57.40 49.01 34.20 67.54 55.52

Curved

DDPPO (10M steps) * [42] 7.90 3.27 9.50 7.11 5.50 4.72 7.63 5.03

DDPPO (extra data + 50M steps)* [42] 18.10 15.42 16.30 14.46 2.60 2.23 12.33 10.70

DDPPO (extra data+100M steps)* [42] 22.20 16.51 20.70 18.52 4.20 3.71 15.70 12.91

BC w/ ResNet + Metric Map [9] 3.10 2.53 0.80 0.71 0.20 0.16 1.37 1.13

BC w/ ResNet + GRU [9] 3.60 2.86 1.10 0.91 0.50 0.36 1.73 1.38

NRNS w/ noise [9] 27.30 10.55 23.10 10.35 10.50 5.61 20.30 8.84

NRNS w/out noise [9] 35.50 18.38 23.90 12.08 12.50 6.84 23.97 12.43

ZSEL* [20] 41.0 28.2 27.3 18.6 9.3 6.0 25.9 17.6

OVRL* (53 GPU days) [44] 53.60 31.70 47.60 30.20 35.60 21.90 45.60 28.00

NRNS + SLING [43] 58.6 16.1 47.6 16.8 24.9 10.1 43.7 14.3

OVRL + SLING [43] 68.4 47.0 57.7 39.8 40.2 25.5 55.4 37.4

FeudalNav (Ours) 72.50 51.26 64.40 40.73 43.70 25.32 60.2 39.11

Table 1. Quantitative comparison of our method (FeudalNav and Stacked FeudalNav) against baselines and SOTA on the image goal task

following the evaluation protocol from NRNS [9] in previously unseen Gibson environments [45]. Bold = best performing.

latent space to dynamically build a memory proxy map of

previously visited locations. We project SMoG features

(128 dim) to a 2D latent space using a simple MLP that acts

as an isomap imitator network by preserving the relative dis-

tance between image features. To update the MPM, we add

a gaussian kernel to the corresponding 2D location in the

map for each observation, thus creating a density map with

values corresponding to the amount of exploration that has

occurred in each location. The high-level manager polls the

MPM’s density to determine when a region is well-explored

and movement away from the current region is desired.

The mid-level manager mimics human navigation poli-

cies by predicting a point in the environment to move to-

wards. The intuition is that the human point-click navi-

gation decisions in [1] are learnable and generalize to new

environments with zero-shot transfer. We finetune Resnet-

18 [48] to predict the pixel coordinate directing the naviga-

tion agent’s motion in the environment from the combined

input of the RGBD observation and the MPM. Navigation

begins with Waynet predicting a waypoint for exploration.

Concurrently, keypoint matches between the current obser-

vation and a goal image are computed by Superglue. If the

confidence of this keypoint match is high, the average of the

matched keypoints is used in the navigation pipeline instead

of the waypoint prediction. In this manner the agent mimics

human navigation in novel environments while checking if

the goal location has been found.

The low-level worker agent chooses which actions to ex-

ecute in the environment from the following action space:

“turn left 15 degrees”, “turn right 15 degrees”, and “move

forward 0.25 meters (m)”. Although an RL agent is typi-

cally used for this type of task, we find a classifier works

well to enable effective navigation. We train this classifier

to learn a mapping between depth map and waypoint in-

put and the corresponding human-chosen action from the

LAVN dataset [1]. The agent chooses to stop navigation

when the confidence threshold for matching goal image fea-

tures to the current observation is high and either the agent’s

depth measurement indicates it is sufficiently close to the

goal location or the area of the matched keypoints is rela-

tively large with respect to the total image size.

Results We test the performance of FeudalNav using the

procedure outlined in NRNS [9] on the image-goal task in

previously unseen environments. All observation image are

480×640 pixels with 120
◦ field of view. Each agent trajec-

tory is evaluated on success rate (whether or not the agent

reaches the goal) and SPL (success rate weighted by inverse

path length). We compare FeudalNav’s performance against

a variety of SOTA methods in Table 1 and show improved

performance to RL [42], behavior cloning [9], graph-based

[9], last mile [43], zero-shot [20], and self-supervised [44]

SOTA.
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