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Abstract
Embodied AI models often employ off the shelf vision

backbones like CLIP to encode their visual observations.
Although such general purpose representations encode rich
syntactic and semantic information about the scene, much
of this information is often irrelevant to the task at hand.
This introduces noise within the learning process and dis-
tracts the agent’s focus from task-relevant visual cues. In-
spired by selective attention in humans—the process through
which people filter their perception based on their task at
hand—we introduce a parameter-efficient approach to filter
visual stimuli for embodied AI. Our approach induces a task-
conditioned bottleneck using a small learnable codebook
module. This codebook is trained jointly to optimize task
reward and acts as a task-conditioned selective filter over
the visual observation. Our experiments showcase state-of-
the-art performance for object goal navigation and object
displacement across 5 benchmarks, ProcTHOR, Architec-
THOR, RoboTHOR, AI2-iTHOR, and ManipulaTHOR. The
filtered representations produced by the codebook also gen-
eralize better and converge faster when adapted to other
simulation environments such as Habitat. Our qualitative
analyses show that agents explore their environments more
effectively and their representations retain task-relevant in-
formation like target object recognition while ignoring su-
perfluous information about other objects. (project page)

1. Introduction
Human visual perception is not a passive reception of all
available stimuli; it selectively tunes itself to process visual
cues relevant to the task at hand [4, 5, 8]. For instance, when
searching for our misplaced keys, we tend to overlook many
visual details in the scene and concentrate only on surfaces
where we usually place our keys.

Embodied-AI agents are tasked with similar goal-directed
behaviors such as navigation [3, 14], instruction following [1,
13, 17], manipulation [9, 19], and rearrangement [2, 18].
Conventional frameworks use general-purpose visual back-
bones [11, 20] to extract visual representations and fuse it

*Equal contribution

with goal embeddings to construct a goal-conditioned rep-
resentation E ∈ RD, where D is often as large as a 1574.
However, this general-purpose representation often contains
task-irrelevant information, distracting the agent from more
pertinent visual cues and introducing unnecessary noise into
the learning process.

In this paper, we leverage insights from cognitive psy-
chology to create task-specific representations for embodied
AI agents, filtering out irrelevant sensory input and only pre-
serving essential stimuli. We introduce a parameter-efficient
codebook module into our agent’s architecture, which in-
cludes 256 learnable latent codes of 10 dimensions each.
This module takes visual embedding E ∈ R1574 as input
and selects from these codes through an attention mecha-
nism to form the bottlenecked representation Ê, a weighted
combination of the selected codes (Figure 1). This approach
effectively narrows down the visual information to the most
task-relevant cues by using a bottleneck of limited low-
dimensional latent codes.

2. Method
Background. Embodied-AI frameworks typically include:
a visual encoder that turns inputs like RGB into a visual
representation v; a goal encoder that converts task objectives,
such as GPS locations or instructions, into a goal embedding
g; and a previous-action encoder that captures the most
recent action in an embedding α. These are fused into a
task-conditioned representation E. The architecture also
includes a recurrent state encoder that aggregates all past
representations into a single state and an actor-critic head
that predicts next action based on the current state.

The need for task-bottlenecked visual representations.
EmbCLIP [11] is today’s state-of-the-art model for the tasks
that we consider which encodes the three representations
in E ∈ RD (D = 1574). This embedding contains CLIP
features, which were trained for general-purpose vision tasks.
Therefore, when presented with the input image, this rep-
resentation identifies a large number of object categories,
their attributes, etc. These additional pieces of information
are also sent over to the policy, which is often designed as

https://embodied-codebook.github.io/
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Figure 1. An overview of EmbCLIP-Codebook. The 3 representations corresponding to the input frame, the goal, and the previous action
get concatenated to form E ∈ R1574. The codebook module takes E and generates a probability simplex P ∈ R256 over the latent codes.
The hidden compact representation h ∈ R10 is a convex combination of the codes weighted by P . The final task-bottlenecked codebook
representation Ê is derived by upsampling h which is subsequently passed to the recurrent state encoder and the policy to produce an action.

an RNN followed by a small actor-critic module. These few
parameters must serve two purposes: 1) identify what infor-
mation is useful for the task at hand and 2) what action to
take given that information.

The codebook module. We introduce a module that
decouples the two objectives. The input encoders and the
codebook focus on extracting essential information for the
task from the visual input, whereas the policy can focus
on taking actions conditioned on this filtered information.
The codebook is a parameter-efficient module to transform
the general-purpose representation E into a compact task-
bottlenecked one Ê (Fig. 1). This module contains a set of
latent vectors C = [c1, c2, ..., cK ] ∈ RK×Dc (K denotes
codebook’s size and Dc is the dimension of each latent code).
To create a strong bottleneck, we set Dc = 10 and K = 256.
These codes are initialized randomly via a normal distribu-
tion and optimized along with the overall training.

The module contains a scoring function ϕ(.) to gener-
ate a probability simplex over the K latent codes ϕ(E) =

P = [pi]
K
i=1 such that

∑K
i=1 pi = 1. The scoring function

ϕ is a single-layer MLP followed by a softmax function.
This forces the agent to select which latent code(s) are more
useful for representing the current frame. Next, the hidden
compact representation h is a convex combination of the
learnable codes {ci}Ki=1 weighted by their corresponding pi:
h = PTC =

∑K
i=1 pi.ci. Finally we upsample the hidden

embedding h to the task-bottlenecked codebook representa-
tion Ê. All modules are trained to optimize the task reward.
3. Experiments
All models are trained using (PPO) [16] in AllenAct frame-
work . We follow [7] to pretrain the EmbCLIP baseline
and EmbCLIP-Codebook on PROCTHOR-10k houses. 1.
We show state-of-the-art zero-shot performances on two
Embodied-AI tasks—object goal navigation (ObjNav) [6]
and object displacement (ObjDis [10])—across five bench-
marks (ProcTHOR[7], ArchitecTHOR, RoboTHOR [6],
AI2-iTHOR[12], and ManipulaTHOR [9])(Table 1). 2. We
demonstrate that our bottlenecked embeddings generalize

Table 1. We outperform the baselines in zero-shot evaluation on 4 Object
Goal Navigation benchmarks and 1 Object Displacement benchmark.

Object navigation
Benchmark Model SR(%)↑ EL↓ Curvature↓ SEL↑

ProcTHOR-10k (validation) EmbCLIP 67.70 182.00 0.58 36.00
+codebook 73.72 136.00 0.23 43.69

ARCHITECTHOR (0-shot) EmbCLIP 55.80 222.00 0.49 20.57
+Codebook 58.33 174.00 0.20 28.31

RoboTHOR (0-shot) EmbCLIP 51.32 - - -
+Codebook 55.00 - - -

AI2-iTHOR (0-shot) EmbCLIP 70.00 121.00 0.29 21.45
+Codebook 78.40 86.00 0.16 26.76

Object displacement
PU(%)↑ SR(%)↑

ManipulaTHOR m-VOLE 81.20 59.60
+Codebook 86.00 65.10

Table 2. Models are trained on ProcTHOR and evaluated with fine-tuning
on Habitat. We show much better adaptation with lightweight finetuning.

Object goal navigation
Benchmark Fine-tuning parts Model SR(%)↑ SPL↑ Invalid Actions(%)↓ Curvature↓

Habitat challenge 2022(HM3D Semantics) Adaptation Module
EmbCLIP 36.45 18.18 28.10 0.53
+Codebook 50.25 25.76 21.50 0.26
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Figure 2. GradCAM Visualization. While EmbCLIP is distracted by
different objects and other visual cues even though the target object is
visible in the frame, EmbCLIP-Codebook is able to ignore such distractions
and only focus on the object goal.
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Figure 3. Sample Trajectory. EmbCLIP agent takes many redun-
dant rotations, resulting in a high average curvature, whereas ours
navigates more smoothly (see curvature metric in Tab. 1).

well to new visual domains (Habitat environments [15])
with minimal finetuning (Table 2). 3. We confirm that the
codebook-bottlenecked representation captures the most
task-relevant information and ignores distractions. 4. We
observe noticeable improvements in agent’s behavior in the
form of smoother trajectories and more efficient explo-
ration strategies.
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