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Abstract

We propose an efficient method, In-Context Abstraction
Learning (ICAL), to improve in-context VLM agents from
sub-optimal demonstrations and human feedback. Specifi-
cally, given a noisy demonstration for a task in a new domain,
LLMs/VLMs are used to fix inefficient actions and annotate
four types of cognitive abstractions. These abstractions are
then refined by executing the trajectory in the environment,
guided by natural language feedback from humans. We
demonstrate that this method rapidly learns useful experi-
ence abstractions. Our ICAL agent improves on the state-of-
the-art when tested in dialogue-based instruction following
in household environments in TEACh, action anticipation in
Ego4D, and in multimodal autonomous web agents in Visual-
WebArena. In TEACh, we improve on the state-of-the-art by
12.6% in goal-condition success, outperforming LLM agents
that use the raw visual demonstrations as in context exam-
ples without abstraction learning. In VisualWebArena, we
improve on the state-of-the-art by an absolute 8.4% and rela-
tive 58.74% in task success, outperforming VLM agents that
use hand-written examples. In Ego4D, we improve 6.4 noun
and 1.7 action edit distance over few-shot GPT4V. Lastly, we
find that weight fine-tuning and in-context abstraction learn-
ing complement each other, with their combination yielding
the best performance.

1. Introduction
Humans acquire skills through language and observation,
a model for automated systems. These systems must learn
from verbal instructions and demonstrations to develop rapid
learning technologies. This involves integrating linguistic
feedback and demonstrative learning to refine knowledge
across different contexts.

Research has used large language models (LLMs) and
visual language models (VLMs) to derive insights from ex-
periences, improving performance by adding these insights
to prompts [7, 9, 10, 13]. However, there remains limitations
in task transfer and underutilization of visual data.

We introduce a new method, In-Context Abstraction
Learning (ICAL), for teaching VLMs using suboptimal
demonstrations and feedback. ICAL helps VLMs create

and refine multimodal abstractions, aiding them in under-
standing task dynamics and critical knowledge [1, 2, 5, 14].

2. In-Context Abstraction Learning (ICAL)
ICAL starts by obtaining a noisy trajectory. It has two phases:
(1) the abstraction phase Fabstract, where a VLM corrects
the trajectory and adds language comments in isolation (Sec-
tion 2.1), and (2) the human-in-the-loop phase Fhitl, where
the trajectory is executed with human feedback to refine
it (Section 2.2). Each corrected trajectory is stored as a
contextual reference for learning and inference.

2.1. VLM-driven Abstraction Generation

The abstraction function Fabstract processes trajectory
ξnoisy into an optimized sequence ξopt with language ab-
stractions L based on the instruction I and previous success-
ful examples {e1, . . . , ek}.

Fabstract : (ξnoisy, I, {e1, . . . , ek}) → (ξopt, L) (1)

The VLM is prompted to annotate subgoals [2], causal re-
lationships [14], state changes [1], and relevant state [5],
highlighting important demonstration aspects.

2.2. Human-in-the-loop Abstraction Verification

Human-in-the-loop learning involves executing the opti-
mized trajectory ξopt in the environment. A human monitors
and provides feedback H(at, ot) on failures. The VLM is
then prompted to revise the trajectory and annotations:

Ξupdate(ξopt, H(at, ot), L, I, {e1, ..., ek}) → ξ′opt, L
′ (2)

The environment is reset after feedback, and the process
repeats until the task is successful or a limit is reached.

2.3. Agent Deployment After Example Learning

Once examples are learned, the agent uses them to perform
new tasks. The VLM generates actions based on the new
instruction I , visual and textual state, and retrieving the
top K ICAL examples from the learned set E to guide ac-
tion generation, with similarity scores based on input in-
struction, textual, and visual state features. Implementation
uses gpt-4-1106-vision-preview for the text gen-
eration, unless otherwise noted.
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3. Experiments
3.1. Environments

TEACh [11] This dataset includes over 3,000 dialogues in
AI2-THOR [8], focusing on agents deducing actions from
dialogue for tasks such as MAKE COFFEE. The data is split
into training, seen, and unseen validations. Agents receive
image observations and perform actions like pickup(X)
based on given dialogue-based instructions. Using HELPER
modules [12], agents navigate and manipulate environments,
and are evaluated on fulfilling all task conditions. 250 hu-
man demonstrations in TEACh training were used for ICAL.
We use ground truth semantic segmentation and depth for
TEACh evaluations.

VisualWebArena [6] This dataset consists of 910 episodes
of web tasks on sites like Shopping and Reddit. Agents
receive visual and textual instructions and interact with web-
pages using image screenshots, html text, and a fixed ac-
tion API. Success is measured by task completion based on
user instructions. 30 human demonstrations and 62 GPT4V-
collected demonstrations were abstracted using ICAL.

Ego4D [4] Ego4D is a daily life activity video dataset of
hundreds of scenarios. We focus on the long-term action
anticipation task to predict the future user actions given an
RGB egocentric video. 100 demonstrations from validation
set were abstracted using ICAL, without human-in-the-loop
(VLM-driven Abstraction Generation only). We take 200
unseen validation videos for evaluation. All GPT4V evalua-
tions use DEVA tracking [3] + Set-of-Marks [17] for image
inputs. Supervised baseline uses SlowFast with MViT [4].

3.2. TEACh Evaluation

ICAL outperforms baseline approaches significantly, achiev-
ing a 17.9% absolute improvement in task success rate over
unprocessed demonstrations. ICAL outperforms the hand-
written examples used by the existing state-of-the-art in
TEACh by 12.6% in goal condition success and 0.6% in
task success (Table 1).

Continual Improvement ICAL shows progressive im-
provement in task success as more examples are learned,
highlighting the benefits of continual learning and example
accumulation (Figure 1).

Improving with Fine-Tuning Fine-tuning the LLM on
ICAL examples further improves performance, especially
when combined with retrieval-augmented generation, indi-
cating the utility of integrating learned examples in training
(Table 4).

Ablation Studies Ablation studies confirm that each com-
ponent of ICAL—from the abstraction phase to the human-
in-the-loop phase—is crucial for achieving the observed
improvements in performance (Table 1).

Table 1. Evaluation of the TEACh un-
seen validation set using GPT-3.5-1106.
Visual demos utilize an inverse dynam-
ics model, while Kinesthetic demos are
labeled with ground truth actions. GC =
goal-condition success

Success GC

HELPER handwritten [12] 34.5 36.7
Zero-Shot CoT [7] 11.8 24.6
Raw Visual Demos 17.2 26.6
Raw Kinesthetic Demos 26.5 29.5
ICAL (ours) 35.1 49.3
w/o abstraction phase 29.4 44.9
w/o human-in-the-loop 29.9 41.0
w/ re-ranking [15] 35.3 51.7
w/ GPT4 41.7 63.6

Table 2. Evaluation on Ego4D Long
Term Action Anticipation unseen valida-
tion subset. ICAL does not use human-in-
the-loop due to the passive nature of this
task.

ED@(Z=20)
Verb Noun Action

Supervised [4] 0.7251 0.7393 0.9235
639x more data

Few-shot CoT [16] 0.7877 0.7575 0.9414
ICAL (ours) 0.7802 0.6934 0.9242

Table 3. Evaluation results on Visu-
alWebArena. Ablations are done on a
reduced 257 episodes.

Seen Unseen Avg.

GPT4V+SoM [6] 16.3 14.1 14.3
ICAL (ours) 38.8 20.9 22.7

Ablations
GPT4V+SoM [6] 11.5 12.9 12.7
ICAL (ours) 28.0 21.6 22.2
w/o image 28.0 17.3 19.0
w/ full trajectory 57.7 21.6 25.5

Table 4. Results on finetuning the LLM
on the ICAL demonstrations. The model
used is GPT3.5-turbo-1106.

Success GC

zero-shot 11.8 24.6
retrieval 35.1 49.3
finetuned 23.2 40.3
finetuned + retrieval 35.8 54.2

Figure 1. ICAL enables continual learning with more examples. Filled markers
 indicate full task success, while open markers# denote partial task (goal-condition)
success. A bar plot comparing ICAL at 120 examples to baselines shows notable
advancement over the Vanilla ICL, which represents the Raw Visual Demos baseline.

3.3. Ego4D Evaluation

See Table 2. ICAL demonstrates superior few-shot per-
formance on Ego4D action anticipation compared to hand-
written few-shot GPT4V that uses chain of thought [16] by
6.4 noun and 1.7 action edit distance. ICAL also remains
competitive with the fully supervised baseline [4] despite us-
ing 639x less training data. We find GPT4V video processing
to have the most trouble with verb prediction.

3.4. Visual Web Navigation Evaluation

ICAL demonstrates state-of-the-art performance on Visu-
alWebArena, outperforming previous best methods by an
absolute 8.4% (relative 58.74%) in success rate (Table 3).
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