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Figure 1. Overview of RoboVerse benchmark. We provide a unified infrastructure for robotic manipulation in simulation environments.
This design unifies diverse tasks, extensive demonstrations, and different robot embodiments in existing robotic manipulation benchmarks.
We further enrich the available robotic manipulation demonstration by scaling existing tasks with domain randomization and incorporating
newly designed tasks. Our benchmark and dataset exhibit remarkable flexibility for each task, allowing for utilization across different
observation modalities, diverse randomization strategies, and scalability with the joint efforts of the robotics community via an easy-to-use
coding pipeline.

Abstract

The importance of diverse, high-quality datasets is un-001
derscored by their role in training foundational models, es-002
pecially in fields like natural language processing and com-003
puter vision. However, scaling up data and models for004
robotics presents unique challenges due to the confinement005
of prior models to specific datasets and domains and the006
limitations inherent in collecting diverse real-world demon-007
strations. To overcome these limitations, we propose lever-008
aging simulators as an alternative. Simulators can generate009
vast, diverse datasets and allow for flexible manipulation of010
various elements, such as observation representations and011
action formats, thereby offering a scalable and adaptable012
approach for training robotic models. To this end, we pro-013
pose RoboVerse benchmark, in which we provide a uni-014
fied infrastructure for diverse tasks, extensive demonstra-015
tions, and different robot embodiments. We also collect a016
large-scale dataset merging both existing benchmarks and017
newly designed tasks. Furthermore, our framework exhibits018
remarkable flexibility, allowing for utilization across differ-019
ent observation modalities, diverse randomization strate-020
gies, and scalable data augmentation.021

1. Introduction 022

Recent advancements in foundational models highlight the 023
growing importance of comprehensive and high-quality 024
datasets in improving model performance and generaliza- 025
tion capabilities. However, directly adapting such data 026
scaling effects to robotics research faces several signifi- 027
cant challenges in data collection. Predominantly, with data 028
from different sources utilizing different input modalities 029
(e.g., RGB images, point clouds, etc.) and robot embodi- 030
ments (e.g., Franka Emika, UR10e, etc.), setting a universal 031
standard for both data representation and task is difficult. 032
Consequently, linking research findings across different ex- 033
perimental settings for a cohesive conclusion is challenging. 034

To address this limitation, prior works have attempted 035
to collect large-scale manipulation demonstrations in both 036
real-world and simulation environments. In real-world set- 037
tings, the RT series [1–4, 14] have RGB recordings of robot 038
manipulation at the cost of extensive data collection efforts. 039
Simulation-based benchmarks such as ManiSkill [10, 12] 040
and RoboSuite [16] collect demonstrations of specific tasks 041
in different simulation environments, making it challenging 042
to transfer policies learned in different benchmarks. 043

Recognizing the substantial effort needed to collect real- 044
world data and the lack of unification in robot simulation 045
benchmarks, our RoboVerse benchmark encompasses the 046
following appealing features: 047
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• Unified Structure: We devise a unified task structure,048
dataset format, and evaluation system to support a wide049
range of tasks, complemented by a suite of tools to facili-050
tate task design and demonstration generation.051

• Flexibility and Diversity: The flexibility of our bench-052
mark allows for effortless customization of new tasks,053
observation representations, and action representations to054
suit specific needs. We unify existing demonstrations in055
simulation environments and also collect a large amount056
of tasks and demonstrations with rich annotations for057
downstream policy learning.058

• Comprehensive Modalities: Utilizing simulation envi-059
ronments, we provide both multi-view RGB recordings,060
and point clouds as well as detailed language annotations061
catering to a variety of tasks.062

• Scalability: We provide extensive APIs to make our063
benchmark scalable for robotics manipulation research,064
enabling the seamless addition of new tasks, demonstra-065
tions, and the training of new models.066
Utilizing RoboVerse, we can thoroughly evaluate067

the performance and generalization capabilities of existing068
methods across input modalities, tasks, and robot embodi-069
ments through both interpolation and extrapolation. Addi-070
tionally, with our integrated vision-language-action demon-071
strations, we can craft a versatile robotic manipulation pol-072
icy for diverse tasks and complex scenarios.073

2. RoboVerse074

We propose RoboVerse, a comprehensive and multi-task075
benchmark, developed using the IsaacSim simulator [13].076

2.1. Benchmark077

Unified Infrastructure. We introduce our Task-Controller-078
Demonstration (TCD) Infrastructure for the RoboVerse079
benchmark. We have developed a base class for tasks,080
which includes all necessary functions and variables spe-081
cific to each task. Upon defining a task, we inherit from082
this base class, customizing configurations and environ-083
ment setup functions accordingly. Additionally, we have084
designed and implemented the controller infrastructure to085
manage embodiment, serving as an intermediary between086
the demonstration and the environment. It’s worth not-087
ing that our controller is adaptable, accommodating vari-088
ous embodiments and standardizing their control mecha-089
nisms. Furthermore, we have collected extensive demon-090
strations for each task within our infrastructure, providing091
ample support for their utilization, re-rendering, replay, and092
evaluation. We have also established a standardized format093
for storing demonstrations across all tasks.094
Task. Our RoboVerse benchmark integrates three key095
components: (1) pick and place, (2) articulated object ma-096
nipulation, and (3) complex manipulation tasks. Specifi-097
cally, we incorporate tasks, benchmarks, and demonstra-098

tions from various sources into our benchmark, includ- 099
ing: (1) ManiSkill [10, 12], (2) SceneDiffuser [11], (3) 100
GAPartNet [8], (4) PartManip [7], (5) ARNOLD [9], (6) 101
Open6DOR [5], (7) COLOSSEUM [15], (8) SAGE[6]. Fur- 102
thermore, we customize certain specific tasks to address 103
shortcomings identified in previous benchmarks. For ex- 104
ample, we combine object pick and place with articulated 105
object manipulation to create tasks such as “open the top 106
drawer of the cabinet on the left of the table, and place the 107
apple into it.” Additionally, we employ heuristics and re- 108
inforcement learning algorithms to execute these tasks and 109
gather demonstrations. 110
Multiple Embodiment Support. We support multiple 111
embodiments in our RoboVerse benchmark, including 112
Franka Emika FR3, Kinova Gen3, KUKA IIWA, Kinova 113
Jaco, UR10e, and so on. 114
Language Description. We provide precise and detailed 115
language descriptions for each task. 116

2.2. Demonstration 117

We gather large-scale demonstrations for the benchmark, 118
each comprising task configurations, trajectories, language 119
annotations, and other useful information. We introduce 120
a unified representation for these demonstrations, focus- 121
ing on the trajectory of the end-effector pose and gripper 122
state. This standardized format enables the seamless reuse 123
of demonstrations across various embodiments and scenes. 124
Additionally, we offer comprehensive APIs for domain ran- 125
domization, facilitating the creation of a more diverse and 126
realistic dataset. Specifically, we currently support random- 127
ization for (1) object colors, (2) ground plane, (3) lighting, 128
(4) scene, (5) camera pose, (6) physical parameters, and (7) 129
cross-embodiment. 130

For existing benchmarks with demonstrations, we di- 131
rectly adopt theirs and transfer them to our simulator en- 132
vironment, adjusting them to fit into the shared format. For 133
other benchmarks or our newly designed tasks, we either 134
utilize their existing policies, amalgamate several existing 135
methods, or design heuristics to collect demonstrations. 136

3. Future Work 137

We are continuously expanding our benchmark and gather- 138
ing more demonstrations to enhance our dataset. Leverag- 139
ing these extensive demonstrations, we aim to quantitatively 140
evaluate several key aspects crucial to the research commu- 141
nity. Our goals include identifying optimal visual repre- 142
sentations that ensure high performance and generalization, 143
addressing data balancing challenges across various tasks, 144
and assessing the model’s generalization capabilities within 145
and beyond its training distribution. Additionally, we plan 146
to explore the contribution of simulation data to real-world 147
applications, focusing on strategies for data balancing and 148
identifying effective training paradigms. 149
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