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Abstract

While there has been remarkable progress recently in001
the fields of manipulation and locomotion, embodied mo-002
bile manipulation remains a long-standing challenge. Com-003
pared to locomotion or static manipulation, a mobile system004
makes a diverse range of long-horizon tasks feasible in un-005
structured and dynamic environments. Prior works use dis-006
entangled modular skills for mobility and manipulation that007
are trivially tied together, causing several limitations such008
as compounding errors, delays in decision-making, and no009
whole-body coordination. We present a reactive mobile010
manipulation framework that uses an active visual system011
to consciously perceive and react to its environment using012
only ego-vision, without any mapping or planning, similar013
to how humans leverage whole-body and hand-eye coordi-014
nation. Videos are available at https://spin-robot.github.io015

016

1. Introduction017

Consider a person trying to carry a coffee cup018
through clutter. This not only requires naviga-019
tional planning from start to goal but planning of020
the whole body to avoid obstacles along the way.021
Furthermore, due to ego-centric022
vision, the person needs to ac-023
tively look around for obstacles.024
This general form of mobile ma-025
nipulation necessitates a cou-026
pled understanding of whole-027
body control with active percep-028
tion as a fundamental capability029
in embodied cognition.030

The current paradigm tackles this through classical031
planning-based control which requires apriori knowledge032
of the precise location of obstacles with a detailed map of033
the environment. This assumption is impractical in the real034
world due to computational reasons, and more importantly,035
because environments are dynamic and keep changing. Hu-036
mans, on the other hand, do not rely on precise estimates037
of obstacles and instead use ego-centric vision to navigate038

around them in real-time. In an unfamiliar environment, 039
where to look is informed by where they want to move 040
(called ‘active perception’), and how they move in return 041
determines what they can see immediately afterward. This 042
integrated mobility and perception allows us to see, adapt, 043
and react to maneuver through cluttered environments. 044

This paper presents SPIN, an end-to-end approach to 045
Simultaneous Perception, Interaction, and Navigation. We 046
train a single model using reinforcement learning (RL) that 047
not only outputs low-level controls for the robot body and 048
arm but also predicts where should the robot’s ego-centric 049
camera look at each time step. We evaluate across 6 bench- 050
marks in simulation and 2 real-world environments outper- 051
forming the baselines. 052

2. Method 053

We want our mobile manipulator to navigate and manip- 054
ulate objects while avoiding obstacles in clutter. With an 055
actuated camera with limited FOV (87◦ horizontal, 58◦ ver- 056
tical), it requires one to look around to simultaneously plan 057
and avoid obstacles. For this challenging problem setup, 058
we train our robot to navigate inside procedurally generated 059
clutter in simulation using RL. The robot is only allowed to 060
perceive part of its environment visible to the camera and, 061
learns to coordinate its arm, base, and camera motion. 062

In practice, since training with RL requires many sam- 063
ples and depth rendering is inefficient, we divide training 064
into two phases. In the first one, we learn mobile manipula- 065
tion behaviors via RL using a cheap-to-compute variant of 066
depth (scandots) and in phase 2 we train a CNN for percep- 067
tion from depth images as illustrated in Figure 1. 068

Phase 1 - Learning Simultaneous Perception, Interac- 069
tion and Navigation In this stage, we use RL to learn to 070
control all the joints of the robot to navigate clutter and pick 071
target objects. Since rendering depth images directly from 072
the robot camera is expensive, we use an ersatz version that 073
contains the same information and is cheap to compute. We 074
do so using scandots st which are the xyz coordinates of the 075
bounding box of each obstacle. To specify which object to 076
pick, we give the initial location of the object oi. Instead of 077
the object image, we give the current location of the object 078
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Figure 1. We learn a policy that uses ego-vision to simultaneously perceive, interact, and navigate in clutter. We propose Coupled
Visuomotor Optimization (CVO) that learns robot and camera actions at the same time using an RL policy. We only provide scandots if
they are visible in the agent’s fov allowing it to learn to move its camera and aggregate information about its environment. This is followed
by a phase-2 supervised training where this behavior is distilled into a student network operating with ego-centric depth images.

Reach Pick Place

Scenario 1 Scenario 2 Scenario 1 Scenario 2
Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

FixCam 1.00 0.53 0.20 1.00 0.50 0.26 0.86 1.00 0.53 0.16 0.97 0.50 0.20
NoPointNet 1.00 0.87 0.57 1.00 0.77 0.63 0.93 1.00 0.83 0.57 1.00 0.77 0.60
Mapping 1.00 1.00 1.00 0.86 1.00 0.97 0.97 1.00 1.00 1.00 1.00 0.90 0.97

SPIN 1.00 0.97 0.93 1.00 1.00 0.93 0.97 1.00 0.97 0.90 1.00 0.97 0.93

Table 1. We report the success rate of each part of the task including reaching (Reach), picking (Pick), and placing (Place) the target object
in the desired location. The placing task requires the agent to bring back the object across the obstacles near its start location.

ot. Here, scandots st and object location ot are privileged079
information which must later be estimated from depth im-080
ages. Given this, we train two separate LSTM policies πnav081
and πpick using a dense reward for each of the tasks and early082
termination for collisions with obstacles.083

Phase 2 - From Scandots to Depth Scandots are not di-084
rectly observable in the real world and must instead be es-085
timated from the depth image. We train a convolution net-086
work C to convert rendered depth images dt to perception087
latents z̃t. This latent is passed to a student policy π′ to pre-088
dict the actions [ãrobot, ãcam]. This is supervised using L2089
loss from the phase 1 actions. The weights for π′ are ini-090
tialized using π. We train this policy using DAgger [3]. For091
the navigation policy, we optimize092

min
Cnav,π′

nav

∥π′
nav(Cnav(dt),xt,gt)− πnav(zt,xt,gt)∥ (1)093

Note that the teacher policy πnav can be trained using either094
the coupled or decoupled approach. Similarly, for the pick095
policy, we estimate current object position ot from depth096

min
Cpick,π′

pick

∥∥π′
pick(Cpick(dt),xt,oi)− πpick(zt,xt,ot,oi)

∥∥
(2)097

3. Experiments and Results098

We use Hello Robot [1] for experiments, train our policy us-099
ing IssacGym [2], and compare against following baselines:100

• FixCam: Fixed camera without active perception. 101
• Mapping: Policy operating on environment map instead 102

of using a moving depth camera. 103
• NoPointNet: Using an MLP, instead of a permutation- 104

invariant PointNet architecture for scandots latent. 105

The simulation benchmark has 6 scenes, 2 of each easy, 106
medium, and hard environment. Easy environments have 0- 107
1 obstacles within a 5m goal range. Medium ones have 2-3 108
obstacles within 5m and the hard ones have heavily clut- 109
tered scenes with 5 obstacles within 5m. In each case, Sce- 110
nario 1 comprises a tight 1m wide long corridor which al- 111
lows the agent to not take shortcuts and reach the goal only 112
by navigating through obstacles. Scenario 2 is an L-shaped 113
corridor with a goal at the end. 114

We compare against various baselines as reported in Ta- 115
ble 1. For each scenario, we report the success rate across 116
10 rollouts and 3 seeds. SPIN achieves ≈ 33% higher suc- 117
cess rate than the NoPointNet baseline since permutation in- 118
variant scandots latent makes the optimization problem eas- 119
ier and also generalizes better at test time. SPIN achieves 120
≈ 68% higher success rate than the FixCam baseline with 121
the camera pointing straight ahead. SPIN is better than the 122
Mapping baseline because the systematic noise in the object 123
locations makes it hard for the robot to avoid them, espe- 124
cially in cluttered environments, whereas SPIN can contin- 125
uously estimate the position of obstacles while it is moving 126
and adapt the motion online. 127
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