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1. Introduction

Recently the AI community focuses on empowering robots
to collaborate with humans [1, 22], notably in receiving ob-
jects handed over by humans [8, 19, 20]. This human-to-
robot (H2R) handover capability enables seamless collabo-
ration in various tasks like cooking and furniture assembly.

However, due to unique challenges, scalable learning of
H2R handover lags behind human-free robot manipulation.
Real-world human interaction training is costly and risky,
urging simulation-based pre-training. However, creating
sufficient simulated assets [2, 5, 11, 14, 15, 27] for han-
dover tasks is challenging. In addition, scaling up demon-
strations [9, 13, 17] inspired by the success of large lan-
guage model [3, 18, 29] poses additional challenges. It is
very costly and unscalable to collect robot demonstrations.

In this work, we aim to learn generalizable H2R han-
dover at scale by tackling the above challenges. We present
a comprehensive solution that scales up both the assets and
demonstrations and effectively learns a closed-loop visuo-
motor policy through a novel imitation learning algorithm.

2. Method

For the generalizable H2R handover task, we introduce
GenH2R, a framework for learning control policies, specifi-
cally 6D control actions for robot grippers, using segmented
point cloud data captured from an egocentric camera.

GenH2R-Sim To scale up geometry and motion assets
depicting humans handing over various objects, we lever-
age large-scale 3D model repositories [4, 10], dexterous
grasp generation methods [25], and curve-based 3D an-
imation. This enables us to procedurally generate mil-
lions of handover scenes, forming an environment named
GenH2R-Sim to support generalizable H2R handover learn-
ing. GenH2R-Sim surpasses HandoverSim [6], an existing
H2R simulator, in both scene quantity (by three orders of
magnitude) and unique object involvement (by two orders

*Equal contribution with the order determined by rolling dice.
†Corresponding author.
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Figure 1. The overview of GenH2R. We introduce a frame-
work for learning generalizable vision-based human-to-robot han-
dover via scalable synthetic simulation, distillation-friendly expert
demonstration generation, and a forecast-aided 4D imitation learn-
ing method. Our models demonstrate strong generalization capa-
bilities to real datasets and can be deployed to a real robot.

of magnitude). In addition, scenes in GenH2R-Sim go be-
yond a straightforward giving and then receiving and cover
cases when humans might keep transforming the object in
a large range during the entire H2R handover process. This
allows for studying complex behaviors such as humans hes-
itating before handing over.

Generating Demonstrations for Distillation To scale
up robot demonstrations, we draw inspiration from the Task
and Motion Planning (TAMP) [13] literature and propose
to automatically generate demonstrations with grasp and
motion planning using privileged human motion and object
state information. There are some straightforward ways to
achieve this goal [12, 16, 23, 26, 28], such as using the priv-
ileged human handover destination information to plan a
smooth demonstration. However, the problem is more chal-
lenging than it seems since the generated demonstrations
need to be suitable for distilling into a visuomotor policy.
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s0 (Sequential) s0 (Simultaneous) t0 t1
S T AS S T AS S T AS S T AS

s0

GA-DDPG [24] 50.00 7.14 22.5 36.81 4.66 23.6 23.59 7.31 10.3 46.7 5.50 26.9

train on
Handover-Sim2real [7] 75.23 7.74 30.4 68.75 6.23 35.8 29.17 6.29 15.0 52.40 7.09 23.8

Handover-Sim2real* [7] 64.35 7.61 26.7 25.69 5.43 15.0 28.56 4.73 17.9 30.60 5.98 16.5
Destination Planning 74.31 9.01 22.8 76.16 6.98 35.2 25.68 5.96 14.1 48.4 8.94 15.1

Dense Planning 74.77 9.54 19.8 75.45 7.32 33.0 27.30 6.26 14.1 52.3 9.24 15.1
Landmark Planning 77.78 9.24 22.3 79.17 7.26 34.9 29.63 6.23 15.4 54.2 9.02 16.6

t0

GA-DDPG [24] 54.76 7.26 24.2 44.68 5.30 26.5 24.05 4.70 15.3 25.50 5.86 14.1

train on
Handover-Sim2real [7] 65.97 7.18 29.5 62.50 6.04 33.5 33.71 5.91 18.4 47.10 6.35 24.1

Handover-Sim2real* [7] 63.55 7.58 26.5 38.89 5.29 23.1 33.31 4.64 21.4 33.35 5.81 18.4
Destination Planning 0.93 12.80 0.01 6.48 12.41 0.3 5.96 8.81 1.9 1.60 12.03 0.1

Dense Planning 81.48 9.51 21.9 84.95 7.45 36.3 38.04 7.16 17.1 57.90 8.85 18.4
Landmark Planning 86.57 8.81 28.0 85.65 6.58 42.8 41.43 6.01 22.3 68.33 7.70 27.9

Table 1. Evaluating on different benchmarks. We compare our method against baselines from the test set of HandoverSim [6] benchmark
(“s0 (sequential)” and “s0 (simultaneous)”) and our GenH2R-Sim benchmark (“t0” and “t1”). We use the best-pretrained models from the
repositories of GA-DDPG [24] and Handover-Sim2real [7] for evaluation. The results for our method are averaged across 3 random seeds.
Note that S means success rate(%). T means time(s). AS means average success(%). *: We reproduce the results of HandoverSim2real in
the true simultaneous setting to make a fair comparison.

We identify the vision-action correlation between visual ob-
servations and planned actions as the crucial factor influenc-
ing distillability and point out that due to the constraints of
robot arm morphology one can easily generate observation-
irrelevant actions and thus harm distillation. To tackle this
challenge, we present a distillation-friendly demonstration
generation method that sparsely samples handover anima-
tions for landmark states and periodically replans grasp and
motion based on privileged future landmarks.

Forecast-Aided 4D Imitation Learning To distill the
above demonstrations into a visuomotor policy, we uti-
lize point cloud input for its richer geometric information
and smaller sim-to-real gap compared to images. We pro-
pose a 4D imitation learning method that factors the se-
quential point cloud observations into geometry and motion
parts [21], facilitating policy learning by better revealing the
current scene state. The imitation objective is augmented by
a forecasting objective which predicts the future motion of
the handover object. Since our demonstrating actions are
generated based on future landmarks, the forecasting objec-
tive can help further exploit the vision-action correlation.

3. Experiments
Dataset (1) HandoverSim [6] includes 1000 real-world han-
dover scenes and 20 DexYCB objects (“s0”). (2) GenH2R-
Sim offers 1,000,000 synthetic handover scenes with 3266
objects (“t0”), comprising 1,000,000 training and 3260 test-
ing scenes. To augment real-world scenarios, We also create
1000 real-world testing scenes (“t1”) from HOI4D [15].
Metric We report the successful rate and the execution time
as usual. To evaluate both success rate and completion effi-
ciency, we introduce AS (Average Success):

AS =

∫ 1

0

Success(t) dt (1)

Methods Simple Setting Complex Setting
Handover-Sim2real 56.7% 33.3%

Ours 90.0% 70.0%

Table 2. Sim-to-Real Experiments. We report the success rate of
our method and HandoverSim2real in 2 different settings.

where Success(t) is success rate considering only success-
ful cases within t · Tmax (Tmax = 13s).

Evaluating on Different Benchmarks We have 2 training
sets: small-scale real-world “s0” from HandoverSim and
large-scale synthetic “t0” from our GenH2R-Sim. Evalua-
tion is conducted on 4 testing sets as depicted in Table 1.

Results on different datasets Our method trained on “t0”
outperform all methods trained on “s0” by a large margin.
Trained on “s0”, our method achieved 11.34%, 16.90%,
12.26%, and 15.93% increase in the success rate. This
demonstrates that a substantial amount of synthetic data is
more beneficial than only a small-scale real-world dataset.

Results for different methods Our method outperforms
baseline methods by a large margin. When trained on “t0”,
our landmark planning method gives substantial improve-
ments of 20.78%, 23.15%, 7.72%, and 21.23% (23.02%,
46.76%, 8.12%, and 34.98% in our reproduced version).

Sim-to-Real Transfer We deploy the models trained in
GenH2R-Sim on a real robotic platform. For the user study,
We recruited 6 users to compare our method (based on land-
mark planning) and Handover-Sim2real across 5 objects
in 2 different settings. As shown in Table 2, our model
gets better performance in completing the handover process
across various objects and scenarios.

For further methodological details and experiment
specifics, please refer to our website.
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