
NavProg: Compositional Embodied Visual Navigation Without Training

Filippo Ziliotto1,2 Tommaso Campari2 Luciano Serafini2 Lamberto Ballan1

1 University of Padova 2 Fondazione Bruno Kessler (FBK)

Abstract

Large Language Models (LLMs) are revolutionizing AI,
demonstrating excellent reasoning capabilities in compos-
ing modules to perform complex image-based tasks. In this
article, we propose an approach that extends the concept of
program composition through LLMs for images, aiming to
integrate them into embodied agents. Specifically, by em-
ploying a PointGoal Navigation model as a foundational
primitive for guiding an agent through the world, we illus-
trate how a single model can address diverse tasks without
additional training. We delegate primitive composition to
an LLM, with only a few in-context examples given along-
side the prompt. We evaluate our approach on three popu-
lar Embodied AI tasks: ObjectGoal Navigation, Instance-
Image Goal Navigation, and Embodied Question Answer-
ing, demonstrating competitive results without any specific
fine-tuning and establishing efficacy in a zero-shot context.

1. Introduction

Large Language Models (LLMs) have gained significant
attention in the field of AI, commended for their impres-
sive ability to generalize and produce responses akin to hu-
man reasoning [2, 9, 16, 17]. These generalization capa-
bilities have been recently exploited in static scenarios to
tackle complex visual tasks given, as an input to the model,
natural language instructions, thus providing a general and
modular interface for a broad range of compositional prob-
lems. Moreover, these frameworks such as, VisProg and
ViperGPT [8, 15] are designed not to require any specific
training.

This paper takes a significant stride in extending the key
idea introduced in these seminal works, for the highly dy-
namic domain of Embodied AI (EAI) [6], by defining spe-
cialized modules tailored for visual navigation tasks. Re-
cently, modular approaches have excelled in handling se-
mantically complex tasks like ObjectGoal Navigation [1, 3,
21], and those demanding long-term memory and strategic
planning, such as MultiObjectNavigation [14, 18]. How-
ever, while effective for specific tasks, these methods
present a challenge: they necessitate significant adjustments
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«while not STOP�

       NAV=NAVIGATE(target=‘sink’)
       DET=DETECT(object=‘sink’)
       CLS=CLASSIFY(object=DET, categories=["...."]')
       STOP=EVAL(‘'stop’ if CLS else ‘navigate’")»
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       NAV=NAVIGATE(target=‘bed’)
        DET=DETECT(object=‘bed’)
        STOP=EVAL(‘'stop’ if DET else ‘navigate''’)
        ANS=VQA(question=‘what color is the pillow?’)»
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Figure 1. Given a desired user task, NavProg is able to generate a
program which is then executed by the agent in the environment.
This figure shows an example (top) in which NavProg synthesizes
a program for the ObjectNav task, as well as an example (bottom)
for Embodied QA.

for each task, despite common modules.
To tackle this problem, our paper introduces NavProg

(see Figure 1), a LLM-based compositional model able to
provide key instructions for guiding agent navigation within
the environment. By providing a few in-context exam-
ples/programs that show how to tackle a specific task, solely
using the modules already available in NavProg, the LLM
learns to combine these modules into programs to address
the task at hand. NavProg integrates modules for seman-
tic navigation, focusing on approaching objects, and image
recognition during navigation. These complement the prim-
itives needed to address diverse tasks.

To showcase the framework’s flexibility, we conducted
zero-shot testing on three prevalent embodied navigation
tasks: namely, i) ObjectGoal Navigation [1], ii) Instance
Image Goal Navigation [10], and iii) Embodied Question
Answering [4].

2. Method and Experiments

Overview. The key component of the proposed frame-
work is referred as to “NavProg Interpreter”. It comprises
visual recognition modules that can be used by the agent to
extract the semantic of the scene, as well as to provide an
understanding of the visual context.

To ensure the LLM delivers a reasonable output to the
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Method Trained SR↑ SPL↑

ZSON [12] ✗ 26 13
ModLearn [7] ✗ 29 17
PredSem [14] ✗ 30 14
L3MVN [22] ✗ 50 23

OVRL [19] ✓ 33 12
PIRLNav [13] ✓ 62 28
OVRL2 [20] ✓ 65 28

NavProg (Ours) ✗ 51 25

Method Trained DTG↓ SR↑ SPL↑

RL Baseline [11] ✓ 6.3 8 4
OVRL2-IIN [11] ✓ 5.0 25 12
Mod-IIN [11] ✓ 3.1 56 23

NavProg (Ours) ✗ 4.4 32 15

Method Trained DTG↓ Acc.↑

PACMAN [4] ✓ 8.12 40
PACMAN (BC+RF†) [4] ✓ 8.13 41
NMC [5] ✓ 8.43 39
NMC (BC+A3C) [5] ✓ 7.94 44

NavProg (Ours) ✗ 8.7 38

Table 1. ObjNav results. Comparison of NavProg with the SoA on the HM3D validation set (left). InstanceImageNav results. Com-
parison of NavProg with trained SoA models, on the HM3D dataset (center). EQA results. Comparison of NavProg against the SoA for
Embodied Question Answering, evaluated on the EQA-MP3D dataset (right). *denotes abbreviation for PACMAN. †denotes abbrevation
for REINFORCE.

interpreter, it is fed with 10 “in-context examples” across
diverse tasks. This enables the LLM to make use of its rea-
soning capabilities effectively, identifying the most suitable
planning for the current user task.

Each generated program is formed by a sequence of
primitives (such as DETECT, CLASSIFY, VQA, etc.) that
invoke the corresponding NavProg modules, implemented
by pre-trained state-of-the-art vision models readily down-
loadable from the web. This process is made possible by a
program interpreter.

All modules are equipped with methods to: i) parse lines
in order to extract input argument names and values, as well
as the output variable name; ii) execute the module, which
may involve pre-trained vision language models as well as
navigation ones, and update the program state with the out-
put variable name and value. The outputs at each step can
be used to understand the system’s behavior, enhancing in-
terpretability and enabling a complete failure analysis.

Navigation Module and Exploration Policy. In order
to navigate the environment, we define a module em-
ploying a PointGoal navigation agent as our foundational
module. Equipped solely with a depth image sensor and
GPS+compass, the agent navigates toward its destination,
given the computed target distance and angle. Once the
target is identified, the focus of exploration transitions to
reaching the designated goal.

Exploration is carried out using a random navigation pol-
icy, sampling distant, unreachable points and enabling the
agent to navigate all the possible locations given sufficient
time. Additionally, it avoids using a map in the exploration
phase, due to the heavy influence of noise on map genera-
tion, particularly in depth sensors used in both simulation
and real-world scenarios.

Performance analysis and comparison to SoA work.
Table 1 (left) shows that our zero-shot approach achieves
state of the art results in the OBJNAV setting. Specifi-

cally, in comparison to MOPA [14], our enhancements yield
a +21% increase in Success rate and a +11% improve-
ment in SPL. Moreover, NavProg shows marginally supe-
rior performance w.r.t. L3MVN [22] model across all met-
rics. Next, we compare SoA fully-supervised methods in
OBJNAV. Both PIRLNav [13] and OVRL2 [20] outperform
NavProg by a considerable margin solely in terms of Suc-
cess rate, while yielding comparable results in SPL. This
disparity in performance can be attributed to their utiliza-
tion of advanced training strategies. In addition, we con-
ducted an user study on OPEN-SET OBJNAV manually an-
notating 17 objects from HM3D Minival scenes. Our ap-
proach achieved a 42% success rate accross 90 generated
episodes, showcasing its effectiveness even in this regard.

In the INSTANCEIMAGENAV task, NavProg outperforms
both a Reinforcement Learning Baseline (RL Baseline)
model, as well as OVRL2-IIN [11] (Table 1 center). Specif-
ically, in the case of OVRL2-IIN, NavProg shows improve-
ments of 7% in Success and 3% in SPL, highlighting its
effectiveness. Morover, OVRL2-IIN is an end-to-end se-
mantic navigation policy model, fine-tuned specifically for
INSTANCEIMAGENAV. In contrast, NavProg is surpassed
in all metrics by Mod-INN [11], which utilizes a frontier-
based exploration and a keypoint-based re-identification
method. To the best of our knowledge, NavProg is the
only zero-shot approach addressing this task. Table 1 (right)
shows that our model yields comparable results against all
trained method of EQA task, both in Answer Accuracy
and DTG, while requiring no training. All SoA models
are trained from a predefined list of possible answers, sim-
plyfing the overall scope to a “classification” problem. In
contrast, our model can provide answers using natural lan-
guage. Furthermore, the primary reasons for failure do not
stem from incorrect answers by the VQA module. Instead,
they are attributed to incorrect distance calculation from the
target and the failure of the object detector to detect the ob-
ject despite its presence (i.e. failure of DETECT module).
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