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Learning Mobile Manipulation Skills
via Autonomous Exploration
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Figure 1. Continual Autonomous Learning: We enable a legged mobile manipulator to learn a variety of tasks such as moving chairs (top,
left and right), righting a dustpan (top, middle), and sweeping (bottom) via practice in the real world with minimal human intervention.

Abstract

To build generalist robots capable of executing a wide001
array of tasks across diverse environments, robots must be002
endowed with the ability to engage directly with the real003
world to acquire and refine skills without extensive instru-004
mentation or human supervision. This work presents a fully005
autonomous real-world reinforcement learning framework006
for mobile manipulation that can both independently gather007
data and refine policies through accumulated experience in008
the real world. It has several key components: 1) auto-009
mated data collection strategies by guiding the robot’s ex-010
ploration toward object interactions, 2) using goal cycles011
for real world RL such that the robot changes goals once012
it has made sufficient progress, where the different goals013
serve as resets for one another, 3) efficient control by lever-014
aging basic task knowledge present in behavior priors in015
conjunction with policy learning and 4) formulating generic016

rewards that combine human-interpretable semantic infor- 017
mation with low-level, fine-grained state information. We 018
demonstrate our approach on Boston Dynamics Spot robots 019
in continually improving performance on a set of four chal- 020
lenging mobile manipulation tasks and show that this en- 021
ables competent policy learning, obtaining an average suc- 022
cess rate of 80% across tasks, a 3-4× improvement over 023
existing approaches. 024

1. Introduction 025

As robots transition from the structured confines of fully 026
mapped industrial settings into the dynamic and unstruc- 027
tured realm of our daily lives, there is an increasing need 028
to build generalist systems capable of executing a wide ar- 029
ray of tasks across diverse environments. While visuomo- 030
tor policies trained with reinforcement learning (RL) have 031
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demonstrated significant potential to bring robots into open-032
world environments[9–11], in practice, they first require033
training in simulation [1–3, 7, 15, 17]. However, it is chal-034
lenging and not scalable to build simulations that capture035
the unbounded diversity of real-life tasks, especially involv-036
ing complex manipulation. What if we instead adopt a strat-037
egy where learning occurs through direct engagement with038
the real world, without extensive environmental instrumen-039
tation or human supervision during the training process?040
We address multiple challenges for such a system.041

Challenge 1: Automated collection of useful data: Con-042
sider a complex, high-dimensional system like a legged mo-043
bile manipulator operating in open spaces where undirected044
actions often do not affect any meaningful change in the en-045
vironment. The first challenge in building an effective real-046
world learning system is in autonomous, task-relevant data047
collection because good robot autonomy does not imply the048
resulting data has a useful learning signal. For example,049
we would like to avoid the robot simply waving its arm in050
the air without interacting with objects if its goal is to ac-051
quire manipulation skills. While such a system could, in052
theory, learn sophisticated mobile manipulation strategies053
given enough data, we propose using off-the-shelf visual054
models to design automated strategies that make learning055
in the real world feasible by guiding the robot’s exploration056
toward object interactions.057

Challenge 2: How to ensure diverse practice? The sec-058
ond challenge is how to allow the robot to purposely prac-059
tice achieving goals from diverse initial states without hu-060
man resetting. Once the robot is close to its goal, it does061
not get to practice the task from states that are further from062
the goal. For instance, consider a robot tasked to move fur-063
niture. The robot may learn to move a piece of furniture to064
its target location; however, now that the furniture is very065
close to the goal, continuing to practice the task from this066
starting state will not yield further benefits. Instead, if the067
environment state could be reset back to the initial state dis-068
tribution, the robot could practice repeating its success. In069
the absence of such resets, how can we enable autonomous070
robots to return to the harder initial state distribution for071
practicing tasks? The approach we use is to set up ‘goal-072
cycles’ [5, 6, 8], where we switch the goal once the robot has073
made sufficient progress on the previous one, or spent a bud-074
get of a fixed interval of trajectories attempting it. Hence,075
the goals serve as resets for one another, and this multi-goal076
learning setup ensures that the robot does not stagnate in a077
limited region of the state space near any particular goal.078

Challenge 3: Efficient control in the real world: Even079
with a favorable initial state distribution, policy learning080
poses a daunting challenge due to large observation and081
action spaces. This challenge is especially severe in the082
case of legged mobile manipulation, where the robot needs083
to move and simultaneously maintain contact with objects084

and retain control. Our approach expedites learning con- 085
trol policies by leveraging basic task knowledge present in 086
behavior priors. These priors can take the form of plan- 087
ners with a simplified incomplete model or automated pro- 088
cedurally generated behaviors. It is important to note that 089
while these priors bootstrap learning and help provide a sig- 090
nal for learning, particularly in the early stages, the priors 091
might not be very competent at performing the task, owing 092
to their simplicity. In our experiments, the average success 093
rate of the prior is just 20% across tasks but as low as 5% for 094
the challenging task of sweeping. In contrast, our learning- 095
based approach enables an average success rate of 80%, a 096
4× improvement. Hence, the priors are not a substitute for 097
learning controllers but rather serve to structure exploration. 098

Challenge 4: Defining rewards in the real world: For the 099
system to benefit from the previously described structure 100
and get better at performing tasks, it must evaluate the rel- 101
ative benefit of different actions by receiving reward feed- 102
back from the environment. Providing reward supervision 103
in the real world often requires physical instrumentation in 104
the form of specialized sensors [13, 16] or needs humans in 105
the loop [4, 12, 14]. Furthermore, the ability of these robots 106
to keep collecting data and learning to improve is bottle- 107
necked by how expensive or difficult it is to scale these 108
approaches. In this work, we seek a flexible way for hu- 109
mans to specify objectives for arbitrary tasks. To this end, 110
we devise a generic reward modeling recipe that combines 111
human-interpretable, semantic information, i.e., text-based 112
detection and segmentation models, along with low-level, 113
fine-grained state information, i.e., vision and depth-based 114
observations for object estimation. Despite yielding noisy 115
estimates, we find the resulting reward is sufficient to allow 116
the robot to learn challenging tasks. 117

The main contribution of this work is a general approach 118
for continuously learning mobile manipulation skills di- 119
rectly in the real world with autonomous RL. The main 120
components of our approach involve: (1) task-relevant au- 121
tonomy for collecting data with useful learning signal, (2) 122
efficient control by integrating priors with learning policies, 123
and (3) flexible reward specification combining high-level 124
visual-text semantics with low-level depth observations. 125
Our approach enables a Boston Dynamics Spot robot to 126
continually improve in performance on a set of 4 challeng- 127
ing mobile manipulation tasks, including moving a chair to 128
a goal with the table in the corner or center of the playpen, 129
picking up and vertically balancing a long-handled dustpan, 130
and sweeping a paper bag to a target region. Our exper- 131
iments show that our approach gets an average evaluation 132
success rate of about 80% across tasks, which is a 4× im- 133
provement over using either RL or the prior individually. 134
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