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Abstract

We used a 3D simulator to create artificial video data
with standardized annotations, aiming to aid in the develop-
ment of Embodied AI. Our question answering (QA) dataset
measures the extent to which a robot can understand human
behavior and the environment in a home setting. Prelimi-
nary experiments suggest our dataset is useful in measuring
AI’s comprehension of daily life.

1. Introduction
As Embodied AI continues to develop, understanding the
time and place of actions in daily life becomes increasingly
important [1–3, 14, 15]. Datasets and benchmarks have
been created to support their development, and challenges
have been presented [4, 6, 12].

Most of this data consists of recorded images of everyday
life, annotations, and descriptions. The annotations were
performed manually and were imprecise; not everything in
the room was annotated. The behavior of what the person
tries to do needs to be fully described in these descriptions.

Nishimura et al. [13] proposed PrimitiveActionOntol-
ogy1 to abstract activity labels in recognition datasets based
on HomeOntology [19] and International Classification of
Functioning, Disability and Health (ICF)2. They also pro-
posed a HomeObjectOntology3 based on VirtualHome as-
sets, objects defined in Charades [17], and objects that oc-

1https://github.com/aistairc/PrimitiveActionOntology
2https://www.who.int/standards/classifications/international-

classification-of-functioning-disability-and-health
3https://github.com/aistairc/HomeObjectOntology

curred in the videos in the video archive called Elderly Be-
havior Library4.

We created artificial video data (MMDL: Multimodal
Dataset of Daily Life) using a 3D VirtualHome-AIST [18]
simulator, which is based on VirtualHome [16] and, using
VirtualHome2KG [5], created data describing what it is and
where it is located for more objects. These data also clar-
ify what the data are from the scripts that are placed in the
simulator to make the avatar work. The annotations are me-
chanically generated with a standard vocabulary based on
PrimitiveActionOntology and HomeOntology, which con-
tributes significantly to the development of Embodied AI as
they are consistent and free of contradictions.

We also created a question answering (QA) dataset
(MMQADL: Multimodal Question Answering Dataset of
Daily Life) to measure the extent to which the robot could
understand a person’s daily life from a video. We offer
various types of descriptive and quantitative questions for
question answering (QA) to gather information on location,
action, object, time, and more. We also provide location-
selective and descriptive QA examples for training and eval-
uation data.

This paper presents the findings of initial experi-
ments conducted using two generative AIs, namely Video-
LLaVa [10] and Google’s Gemini 1.5 Pro Vision. These AIs
were fed with a combination of images, natural language
sentences, and QA that we created. The purpose of this ex-
periment was to investigate AI’s understanding of human
behavior in a home environment. The results of the exper-
iment indicate that our dataset is useful in measuring the
AI’s comprehension of human behavior and the surround-

4https://www.behavior-library-meti.com/behaviorLib/homes/about



ing environment in a home.

2. MMDL: Simulation movie and detailed an-
notation

Figure 1. Example of video snapshot and action script

Figure 1 shows an action script titled “Do work on com-
puter” and a snapshot of the video generated from it in
VirtualHome-AIST. The first line of the action script is the
title, the second line is the description, and the fourth and
subsequent lines are the rows of the avatar’s behavior. There
are 3,530 different videos, each of which shows a short
chunk of behavior, called an activity, of approximately 30
seconds to a minute in length. They were generated from
706 scenarios (action scripts); for one scenario, five videos
were generated with different camera positions. The charac-
ters’ behavior (avatars) in the videos and the 3D coordinates
of approximately 400 objects in the house were annotated as
data using VirtualHome2KG. The states of lights and other
electrical appliances, such as on/off, and the opening/clos-
ing of the fridge and room doors, were also recorded [18],
and the 2D positions of the camera image were also anno-
tated for the objects with which the avatar was involved.
2D annotation is provided in the same scene graph format
as Action Genome [8].

3. MMQADL: QA dataset for measuring daily
life understanding

Listing 1. Example of Question and Answer

Q: Where i s t h e man 10 s e c o n d s l a t e r from t h e
b e g i n n i n g o f t h e v i d e o ?
A1 : Liv ingroom
A2 : Bedroom
A3 : K i t c h e n
A4 : Bathroom

QA can pose different types of questions. They can be
a choice (Listing 1) or a simple ”yes” or ”no” answer. The
questions were designed to gather information about the lo-
cation, action, object, time, and combination of topics being
discussed based on TempCompass [11] and MVBench [9].
In addition, there are questions that focus on the appropriate
caption for a video, which can be either short or long.

These questions were classified into two types: descrip-
tive and quantitative. Descriptive questions were used to
obtain factual information or details about the topic, event,

Table 1. Score of Precision

action location object time caption
Gemini 0.7 0.9 0.4 0.5 0.8
Video-LLaVa 0.5 0.4 0.25 0.1 0.6

object, or situation. They typically start with words like
“what,” “does,” “where,” and “when.” The quantitative
questions were designed to obtain numerical or quantita-
tive data. They typically start with words like “how many,”
“how much,” “how long,” and “how often.”

The data were designed to provide answers to 70 types
of questions for longer time frames, defined in columns of
three to seven activities, and provided in JSON format. The
QA data were divided into two parts: learning (80%) and
evaluation (20%) data, both containing answers.

The training data not only lacks answers but also pro-
vides annotated data with missing locations, actions, and
objects that correspond to the answers. Additionally, the
questions were categorized as Easy or Hard. Easy questions
have only two options, while hard questions have around 30
options for actions, and all objects (about 200) that exist in
the house are considered candidates for objects.

4. Preliminary Experiment
In the Knowledge Graph Reasoning Challenge 2024, one
of the strategies [7] is to complete the annotations provided
in the Knowledge Graph from the video. If we can accu-
rately fill in all the missing parts of the annotation, we can
answer all the questions correctly. We have used video clips
and questions about the missing actions, locations, objects,
and time as input. We tested the Large Language Models
to answer the questions, and Table 1 is the result of our ex-
periment. Overall, Gemini performs well. In particular, the
distinction between the four types of rooms is mostly accu-
rate. Video-LLaVa, on the other hand, does not understand
the time elapsed in the video.

5. Summary
This article discusses the creation of a dataset that sup-
ports the development of Embodied AI. The dataset in-
cludes artificial movie data and a QA dataset to measure
the AI’s comprehension of human behavior in a home en-
vironment. The results of the initial experiments show that
the dataset is useful for measuring the AI’s understanding
of human behavior and the surrounding environment in a
home. We are planning to organise a technology contest
(Challenge) in the future. All data is publicly available from
https://github.com/KGRC4SI/DataSet
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