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Abstract

Transferring policies learned in simulation to the real001
world is a promising strategy for acquiring robot skills at002
scale. However, sim-to-real approaches typically rely on003
manual design and tuning of the task reward function as004
well as the simulation physics parameters, rendering the005
process slow and human-labor intensive. In this paper,006
we investigate using Large Language Models (LLMs) to007
automate and accelerate sim-to-real design. Our LLM-008
guided sim-to-real approach requires only the physics sim-009
ulation for the target task and automatically constructs010
suitable reward functions and domain randomization dis-011
tributions to support real-world transfer. We first demon-012
strate our approach can discover sim-to-real configurations013
that are competitive with existing human-designed ones on014
quadruped locomotion and dexterous manipulation tasks.015
Then, we showcase that our approach is capable of solving016
novel robot tasks, such as quadruped balancing and walk-017
ing atop a yoga ball, without iterative manual design.018

1. Introduction019

We propose DrEureka (Domain Randomization Eureka),020
a novel algorithm leveraging Large Language Models021
(LLMs) to automate the development of reward functions022
and domain randomization (DR) parameters for sim-to-real023
transfer. By leveraging the LLM’s strong grasp of physical024
knowledge [1, 2] and effectiveness in generating hypothe-025
ses, DrEureka simplifies the traditionally manual reward026
and DR tuning process by efficiently synthesizing reward027
functions and DR parameters.028

We evaluate DrEureka on quadruped and dexterous029
manipulator platforms, demonstrating that our method is030
general and applicable to diverse robots and tasks. For for-031
ward locomotion, DrEureka-trained policies outperform032
human-designed ones by 34% in speed and 20% in dis-033
tance across different terrains. In dexterous cube rotation,034
DrEureka’s best policy performs nearly 300% more in-035
hand cube rotations than the human-developed policy. Fi-036
nally, we apply DrEureka to a novel task—balancing a037
quadruped on a yoga ball, achieving up to 15 seconds of038
balance in an evaluation setting and over four minutes out-039
doors with additional controls.040

2. Method 041

DrEureka consists of three stages (Figure 1). First, we 042
build on Eureka [3], an algorithm that repeatedly sam- 043
ples reward function candidates from an LLM, trains poli- 044
cies with each reward candidate, and provides the best- 045
performing policy’s reward and training statistics as feed- 046
back for the LLM. To prevent simulated policies from 047
over-exerting motors or learning unnatural behavior, we di- 048
rectly exploit the strong instruction-following capability of 049
instruction-tuned LLMs [4] and prompt the LLM to explic- 050
itly consider safety terms for stability, smoothness, and de- 051
sirable task-specific attributes. The resulting best reward- 052
policy pair RDrEureka, πinitial is much more suitable for de- 053
ployment and minimizes the risk of dangerous behavior. 054

Then, we introduce a simple reward aware physics 055
prior (RAPP) mechanism to compute feasible DR param- 056
eter bounds. At a high level, RAPP seeks for the maximally 057
diverse range of environment parameters where πinitial is 058
still performant. In practice, for each parameter, we search 059
through a general range of potential values at varying mag- 060
nitudes, and with each value, we set it in simulation (keep- 061
ing all other parameters at default) and roll out πinitial in this 062
modified simulation. If the policy’s performance satisfies a 063
pre-defined success criterion, we deem this value as feasi- 064
ble for this parameter. Given the set of all feasible values for 065
each parameter, our lower and upper bounds for a parameter 066
are the minimum and maximum feasible values. 067

Finally, we use RAPP-defined ranges to guide the LLM 068
in generating domain randomization (DR) configurations, 069
contrasting with automatic domain randomization methods 070
that directly apply these ranges. Concretely, we provide 071
all randomizable parameters and their RAPP ranges in the 072
LLM context and ask the LLM (1) to choose a subset of to 073
randomize and (2) determine their randomization ranges. In 074
this manner, the backbone LLM zero-shot generates several 075
independent DR configuration samples, and we use RL to 076
train policies for each reward and DR combination, result- 077
ing in a set of policies. Unlike the reward design compo- 078
nent, it is difficult to select the best DR configuration and 079
policy in simulation because each policy is trained on its 080
own DR distribution and cannot be easily compared. Hence, 081
we keep all m policies and report both the best and the av- 082
erage performance in the real world. 083
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Figure 1. DrEureka uses reward generation, RAPP, and DR generation to produce deployable real-world policies.

Forward Locomotion

Sim-to-real Configuration Forward Velocity (m/s) Meters Traveled (m)

Human-Designed [5] 1.32 ± 0.44 4.17 ± 1.57
Eureka [3] 0.0 ± 0.0 0.0 ± 0.0
Our Method (Best) 1.83 ± 0.07 5.0 ± 0.00
Our Method (Average) 1.66 ± 0.25 4.64 ± 0.78

Cube Rotation

Sim-to-real Configuration Rotation (rad) Time-to-Fall (s)

Human-Designed [6] 3.24 ± 1.66 20.00 ± 0.00
Our Method (Best) 9.39 ± 4.15 20.00 ± 0.00
Our Method (Average) 4.67 ± 3.55 16.29 ± 6.28

Table 1. Comparison against baselines. DrEureka’s aver-
age and best policies outperform Human-Designed and a prior
reward-design baseline.

3. Results and Analysis084

We evaluate our method on the Unitree Go1 quadruped for085
the forward locomotion task, which commands the robot086
to walk forward at 2 meters-per-second on flat terrains. We087
also validate DrEureka on the Leaphand [6] for cube rota-088
tion, which involves rotating a cube in-hand as many times089
as possible within a 20-second interval. We compare with090
policies from Margolis et al. [5] and Shaw et al. [6], which091
we refer to as Human-Designed, as well as Eureka [3],092
which does not have safety consideration and domain ran-093
domization. More details about our experimental setup and094
ablations are in the Appendix.095

Comparison to Existing Sim-to-Real Configurations.096
We first compare DrEureka to Human-Designed to as-097
sess whether DrEureka is capable of providing sim-to-098
real training configurations comparable to human-designed099
ones. For forward locomotion, as shown in Table 1,100
DrEureka is able to outperform Human-Designed in101
terms of both forward velocity as well as distance traveled102
on the track. The performance of DrEureka is robust103
across its different DR sample outputs; the average per-104
formance does not lag too far behind the best DrEureka105
configuration and still performs on par with or slightly bet-106
ter than Human-Designed. In contrast, the plain Eureka107
policy fails to walk in the real world (more analysis in Ap-108
pendix), validating that a reward design algorithm suitable109
for simulation is not sufficient for sim-to-real transfer.110

Similarly, for cube rotation, we see in Table 1 that111
DrEureka outperforms Human-Designed in terms of112

rotation while maintaining a competitive time-to-fall dura- 113
tion. We note that this task permits very little room for er- 114
ror; thus, policies generally perform very well or very badly, 115
which is reflected in the relatively larger standard deviation 116
across DrEureka’s policies. Nevertheless, the best policy 117
from DrEureka significantly outperforms the baseline by 118
nearly three times the rotation without dropping the cube. 119
These results highlight the effectiveness and versatility of 120
our approach across diverse robotic platforms. 121

Real-world Robustness. One main appeal of do- 122
main randomization is the robustness of the learned poli- 123
cies to real-world environment perturbations. To probe 124
whether DrEureka policies exhibit this capability, we 125
test DrEureka (Best) and Human-Designed on sev- 126
eral additional testing environments for forward locomo- 127
tion. Within the lab environment, we consider an artificial 128
grass turf as well as putting socks on the quadruped legs. 129
For an outdoor environment, we test on an empty pedes- 130
trian sidewalk. Numerical results are in the Appendix. We 131
see that across different testing conditions, DrEureka re- 132
mains performant and consistently matches or outperforms 133
Human-Designed. This validates that DrEureka is ca- 134
pable of producing robust policies in the real world. 135

The Walking Globe Trick. We employ DrEureka 136
for the novel and challenging globe walking task where 137
the quadruped balances on a yoga ball. The de- 138
formable, bouncy surface, which is not accurate in sim- 139
ulation, increases task complexity. Lacking existing sim- 140
to-real configurations, this task offers an ideal test-bed for 141
DrEureka’s ability to accelerate robot skill discovery. 142

In a lab setting that straps the robot to a central support 143
point, we observe the quadruped staying on the ball for an 144
average of 15.43 seconds, many times making recovery ac- 145
tions to stabilize the ball and readjust its pose. When de- 146
ployed in diverse, uncontrolled outdoor scenes with appro- 147
priate controls that limit the robot’s speed, the policy oper- 148
ated effectively for over four minutes under various condi- 149
tions and obstacles. In summary, DrEureka’s adeptness at 150
tackling the novel and complex task of quadrupedal globe 151
walking showcases its capacity to push the boundaries of 152
what is achievable in robotic control. This feat, achieved 153
without prior sim-to-real pipelines, highlights DrEureka’s 154
potential to accelerate the development of robust and versa- 155
tile robotic policies in the real world. 156
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Appendix246

A. Experimental Setup247

Robot and Task. For our main experiments on quadrupedal248
locomotion, we use Unitree Go1. The Go1 is a small249
quadrupedal robot with 12 degrees of freedom across four250
legs. Its observations include joint positions, joint veloci-251
ties, and a gravity vector in the robot’s local frame, as well252
as a history of past observations and actions. We use the253
simulation environment as well as the real-world controller254
from Margolis et al. [5].255

The task of forward locomotion is to walk forward at 2256
meters-per-second on flat terrains; while it is possible for257
the robot to walk forward at a higher speed, we find 2 m/s258
to strike a good balance between task difficulty and safety259
as our goal is not to achieve the highest speed possible on260
the robot. In the real world, we set up a 5-meter track in261
the lab (see Figure 4) and measure the forward projected262
velocity and total meters traveled in the track direction.263

Additionally, we conduct experiments on the LEAP264
Hand [6]. The LEAP hand is a low-cost anthropomor-265
phic robot hand, featuring 16 degrees of freedom distributed266
among three fingers and a thumb.267

The cube rotation task involves rotating a cube in-hand268
as many times as possible within a 20-second interval. This269
task is challenging because the policy only receives 16 joint270
angles and proprioceptive history as observations and does271
not have access to the position and the pose of the cube. The272
policy then outputs target joint angles as position commands273
to the motors.274

For the cube rotation task, we follow the training and de-275
ployment workflow outlined by the LeapHand authors. For276
training all the policies, we use the same GRU [7] architec-277
ture that receives 16 joint angles as input and outputs 16 tar-278
get joint angles. We also follow the LeapHand training code279
to randomize the initial pose of the hand and the size of the280
cube. When deploying trained policies in the real world,281
the target joint angles are passed as position commands to a282
PID controller running at 20 Hz.283

In addition to the initial pose of the hand and the size of284
the cube, the Human Designed policy is trained with DR285
in object mass, object center of mass, hand friction, stiff-286
ness and damping. In DrEureka, we extend the simulation287
setup to include additional domain randomization parame-288
ters, such as hand restitution, joint friction, armature, object289
friction and object restitution. These parameters, along with290
the others, are detailed in Table 4.291

Methods. DrEureka uses GPT-4 [8] as the backbone292
LLM. DrEureka uses the original Eureka hyperparame-293
ters for reward generation before sampling 16 DR configu-294
rations. To understand the best and the average performance295
of DrEureka, we train policies for all 16 configurations296
and evaluate all policies in the real world. Given the lack of297

Sim-to-real Configuration Forward Velocity (m/s) Meters Traveled (m)

Our Method (Average) 1.66 ± 0.25 4.64 ± 0.78
Without DR 1.21 ± 0.39 4.17 ± 1.04
With Human-Designed DR 1.35 ± 0.16 4.83 ± 0.29
With Prompt DR 1.43 ± 0.45 4.33 ± 0.58
Without Prior 0.09 ± 0.361 0.31 ± 1.25
With Uninformative Prior 0.08 ± 0.331 0.28 ± 1.13
With Random Sampling 0.98 ± 0.45 2.81 ± 1.80

Table 2. Ablations result. Ablations of the DR formulation in
DrEureka all result in decreased performance.

a prior baseline in our proposed problem setting, we primar- 298
ily compare to human-designed reward function as well as 299
domain randomization configuration from the original task 300
implementation from Margolis et al. [5] as reference points; 301
We refer to this baseline as Human-Designed. Note 302
that this baseline trains a velocity-conditioned policy and 303
utilizes a reward function with a velocity curriculum that 304
gradually increases as policy training progresses. For our 305
comparison, we train on the whole curriculum but evaluate 306
the policy at 2 m/s. Note that the purpose of comparing to 307
Human-Designed is to determine whether DrEureka 308
can be useful – i.e., enabling sim-to-real transfer on a rep- 309
resentative robot task for which robotics researchers have 310
devoted time to designing effective sim-to-real pipelines. 311
The absolute performance ordering is of less importance as 312
LLMs and humans arrive at their respective sim-to-real con- 313
figurations using vastly different computational and cogni- 314
tive mechanisms. 315

To verify that a policy outputted by a reward-design al- 316
gorithm itself is not effective for real-world deployment, we 317
also compare against Eureka [3], which designs rewards us- 318
ing LLMs without safety consideration and trains policies 319
without domain randomization. In our analysis, we further 320
consider several ablations of DrEureka in greater detail. 321

B. Ablation Experiments 322

Our ablation experiments aim to answer whether 323
DrEureka generates effective DR configurations. 324

Ablation Details. We compare DrEureka against two 325
classes of ablations that probe (1) whether some fixed DR 326
configuration can generally outperform DrEureka sam- 327
ples, and (2) the importance of DrEureka’s reward-aware 328
priors and LLM sampling. In the first class, we first com- 329
pare to an ablation that does not train with domain random- 330
ization (No DR). Second, we consider a baseline that trains 331
with the human-designed DR (Human-Designed DR) 332
in the original implementation. Third, we consider a base- 333
line that directly uses the full ranges of the RAPP parame- 334
ter priors as the DR configuration (Prompt DR); this ab- 335
lation can viewed as applying domain randomization al- 336
gorithms [9–11] that seek to prescribe the maximally di- 337
verse parameter ranges where the policy performs well as 338
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Figure 2. Policies trained on DrEureka DR configurations exert
less torque in the real world.

the configurations. In the second category of ablations,339
we consider an ablation that only has access to the set of340
physics parameters but without the reward-aware priors (No341
Prior). Additionally, we consider an ablation that has only342
the default search range for RAPP as the parameter priors343
(Uninformative Prior). Finally, we consider a baseline that344
randomly samples from the RAPP ranges (Random DR);345
this baseline helps show whether LLM-based sampling is346
a better hypothesis generator. In all ablations, we fix the347
DrEureka reward function for the task and only modify348
the DR configurations.349

DrEureka outperforms all DR ablations. The real-350
world evaluation of these ablations is included in Table 1.351
We first analyze the group of ablations that fix a single352
choice of DR configuration or lack thereof. We see that our353
tasks clearly demand domain randomization as No DR is in-354
ferior to both DrEureka and Human-Designed. How-355
ever, finding a suitable DR is not trivial. Prompt DR sug-356
gests wide parameter ranges (especially over friction as seen357
in prompts in Appendix) that forces the robot to over-exert358
forces; this result is validated in Figure 2 where we visual-359
ize the histogram of hip torque readings from real-world de-360
ployment of DrEureka policies versus Prompt DR poli-361
cies. On the other hand, using Human-Designed DR does362
not match the performance of DrEureka, illustrating the363
importance of reward-aware domain randomization. Onto364
the sampling-based baselines, the subpar performance of365
Random Sampling suggests the effectiveness of LLMs as366
hypothesis generators, consistent with prior works that have367
found LLMs to be effective for suggesting initial samples368
for optimization problems [3, 12–15]. However, fully utiliz-369
ing LLM’s zero-shot generation capability requires proper370
grounding of the sampling space. No Prior and Uninfor-371
mative Prior, despite using a LLM as sampler, performs372
very poorly and often results in policies that trigger safety373
protection power cutoff in the real world. One common374
concern for LLM-based solutions is data leakage, in which375
the LLM has seen the problems and solutions for an evalua-376
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Figure 3. Ablations for different domain randomization priors.
Replacing RAPP with other choices makes the LLM generate con-
figurations that are difficult to train in simulation.

Safety Instruction Velocity (Sim) Velocity (Real)

Yes (DrEureka w.o DR) 1.70 ± 0.11 1.21 ± 0.39
No (Eureka) 1.83 ± 0.05 0.0 ± 0.0

Table 3. DrEureka safety instruction ablation. Omitting the
safety instruction from DrEureka results in policies that run
quickly in simulation but fail in the real world.

tion task. In our setting, if the LLM has seen the simulations 377
tasks and consequently the human-designed ranges in 378
the open-sourced code base, then even if the priors are with- 379
held in the context, it should be possible to output reason- 380
able ranges out of the box. Fortunately, the negative results 381
of No Prior confirms that data leakage does not appear in 382
our evaluation. Altogether, these results affirm that both 383
reward-aware parameter priors and LLM as a hypothesis 384
generator in the DrEureka framework are necessary for 385
best real-world performance. 386

Sampling from DrEureka priors enables stable sim- 387
ulation training. Finally, to better understand the drasti- 388
cally different performances of different DrEureka prior 389
choices in the real world, we present the simulation training 390
curves in Figure 3. Note that the performances are not di- 391
rectly comparable as each method is trained and evaluated 392
on its own DR distributions. Nevertheless, we observe the 393
stable training progress of DrEureka. In contrast, despite 394
using a LLM, the ablations synthesize poor DR ranges, re- 395
sulting in difficult policy training dynamics. 396

Safety instruction enables safe reward functions. In 397
addition to comparing against human-written reward func- 398
tions, we also ablate DrEureka’s own reward design pro- 399
cedure. In particular, to verify that DrEureka’s safety in- 400
struction yields more deployable reward functions, we com- 401
pare to an ablation of DrEureka that does not include cus- 402
tom safety suggestions in the prompt; see Appendix for the 403
functional form of this reward function. Note that this ab- 404
lation is identical to the original Eureka algorithm in Ta- 405
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Figure 4. Our forward locomotion, cube rotation, and globe walking tasks.
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Figure 5. Comparison between DrEureka and
Human-Designed reward functions on the simulation lo-
comotion task. DrEureka has higher sample efficiency and
asymptotic performance, while Human-Designed relies on a
velocity curriculum to perform well.

ble 1, and we compare it to the DrEureka (No DR) vari-406
ant to eliminate the influence of domain randomization in407
policy performance. As shown in Table 3, removing the408
safety prompt results in a final reward function that can409
move faster in simulation than DrEureka. However, the410
robot acquires an unnatural gait with three of its feet and411
the hip dragging on the ground. Consequently, in the real412
world, this behavior does not transfer, and the policy di-413
rectly face-plants at the starting line; this is not surprising414
as the Eureka reward function contains just a generic action415
smoothing term for safety, which in itself does not prohibit416
awkward behaviors. See our supplementary material for a417
video comparison.418

C. Qualitative Reward Analysis419

Given the results of our experiments, we qualitatively ana-420
lyze the DrEureka reward function RDrEureka (i.e., the best421
reward function from the reward design stage). The math-422
ematical expression is shown in Table 6, and the raw pro-423
grammatic output from the LLM is reproduced in section424
3 of the Appendix. We observe that this reward function425
is multiplicative of its components, a clear deviation from426

Figure 6. Real-world robustness evaluation. DrEureka per-
forms consistently across different terrains and maintains advan-
tages over Human-Designed.

established reward functions for quadrupedal locomotion 427
tasks that bear additive rewards [5, 16–19]. The multiplica- 428
tive nature of DrEureka reward also introduces an inter- 429
esting effect from the DOF Violations term, which is 430
a binary function that indicates whether any robot joint ex- 431
ceeds the joint limit. Namely, if any joint violation occurs, 432
then the entire reward for that time step is 0. Intuitively, 433
this reward function encourages the policy to always learn 434
within the space of safe behavior, as any violation is heav- 435
ily penalized. While prior reward functions on locomotion 436
tasks have considered a binary penalty term on joint limit vi- 437
olation [5], they often incorporate it as an additive penalty, 438
which may not have a large effect on the behavior due to 439
weight scaling. In summary, DrEureka reward is simple, 440
eccentric, yet effective. 441

D. Effectiveness of DrEureka Sim-to-real Rewards 442

In this section, we compare DrEureka’s reward against 443
baselines and ablations to conclude that DrEureka reward 444
is at once effective, safe, and novel; DrEureka’s reward 445
expression is captured in Table 6. 446
DrEureka does not need a reward curriculum. 447

To study the effectiveness of the reward functions in 448
isolation, we fix the domain randomization configura- 449
tions to be Human-Designed for both DrEureka and 450
Human-Designed reward functions and re-train several 451
policies in simulation. Since Human-Designed reward 452
utilizes a velocity curriculum, we also evaluate an abla- 453
tion of the Human-Designed reward function that has 454
a fixed velocity target (i.e., 2.0 m/s) to put it on an equal 455
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PropertyValidRangeRAPPSearchRangeobjectmass[0,∞)[0.01,1]objectcenterofmass[0,∞)[−0.01,0.01]handfriction[0,∞)[0,10]dofstiffness[0,∞)[1,10]dofdamping[0,∞)[0,0.5]handrestitution[0,1][0,1]doffriction[0,∞)[0,0.1]armature[0,∞)[0,0.01]objectfriction[0,∞)[0,10]objectrestitution[0,1][0,1]

Table 4. Domain randomization parameters for cube rotation,
along with their valid ranges and RAPP search ranges.

footing with the Eureka reward function as a standalone re-456
ward function. The training curves are shown in Figure 5457
in the Appendix. We find that DrEureka reward enables458
more sample-efficient training and reaches higher asymp-459
totic performance. In contrast, the Human-Designed re-460
ward crucially depends on the explicit curriculum to work461
comparably; as a stand-alone reward function without cur-462
riculum inputs, Human-Designed makes little progress.463
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E. Full Prompts464

In this section, we provide all DrEureka prompts used for experiments and ablations.465

E1. Reward Generation Prompts466

This section contains the system and task prompts for generating reward functions for forward locomotion and globe walking467
tasks using DrEureka.468 �469
You are a reward engineer trying to write reward functions to solve reinforcement learning tasks as effective as470

possible.471
Your goal is to write a reward function for the environment that will help the agent learn the task described in text.472
Your reward function should use useful variables from the environment as inputs. As an example,473
the reward function signature can be: {task_reward_signature_string}474
Make sure any new tensor or variable you introduce is on the same device as the input tensors.475 � �476

Prompt 1. DrEureka system prompt for reward generation.�477
To make the go1 quadruped run forward with a velocity of exactly 2.0 m/s in the positive x direction of the global478

coordinate frame. The policy will be trained in simulation and deployed in the real world, so the policy should479
be as steady and stable as possible with minimal action rate. Specifically, as it’s running, the torso should480
remain near a z position of 0.34, and the orientation should be perpendicular to gravity. Also, the legs should481
move smoothly and avoid the DOF limits.482 � �483

Prompt 2. DrEureka forward locomotion task prompt for reward generation.�484
To make the go1 quadruped balance on the top of the ball. The quadruped should maintain a z-position of 2 *485

ball_radius or higher. Please keep in mind that the policy learned using your reward terms will be deployed on a486
robot in the real world. As such, you should prioritize safety, robustness, and feasibility over performance.487
Please generate reward terms that penalize actions that are unsafe or infeasible. Please also penalize jittery or488
fast actions that may burn out the motors. Also, remember to keep the scaling of your regularization terms small489

. If you choose to use env.torques, please keep in mind that this value will be large, so your scaling for this490
term should be near 0.00001.491 � �492

Prompt 3. DrEureka globe walking task prompt for reward generation.

E2. Reward Generation Ablation Prompts493

This section contains prompts used in ablation studies, specifically for generating reward functions without safety instructions494
to assess the impact of such instructions on the generated rewards.495 �496
The Python environment is {environment source code}. Write a reward function for the following task: To make the go1497

quadruped run forward with a velocity of exactly 2.0 m/s in the positive x direction of the global coordinate498
frame.499 � �500

Prompt 4. DrEureka forward locomotion task prompt for reward generation, without safety instructions.

E3. Domain Randomization Generation Prompts501

This section includes the initial system and user prompts for generating domain randomization configurations, demonstrating502
how DrEureka is applied to different tasks for robust policy training.503 �504
You are a reinforcement learning engineer. Your goal is to design a set of domain randomization parameters for the505

given task to facilitate successful deployment of the trained policy in the real world.506
To do so, you will be given valid parameters as well as a range for each parameter that indicates the maximum and507

minimum values that parameter can take. Please note that your randomization ranges do not need to cover most of508
the range.509

Also, you should keep in mind that the more you randomize, the more difficult it will be for the policy to learn the510
task within our fixed compute budget. A good policy should be trained only on randomization ranges that will help511
it adapt to the real world.512

You should first reason over each parameter and determine if it’s useful for domain randomization.513
Then, you should output a range of values for each parameter that you think will be useful for the task in a real-514

world deployment. Please explain your reasoning for each parameter.515
516

Output your response in the form of Python code that sets the parameters as variables, e.g.:517
‘‘‘518
friction_range = [0.0, 1.0]519
‘‘‘520
Please make your variable names match the parameter names provided. Each variable should be assigned a range formatted521

as a Python list with two elements. Write everything else as Python comments.522 � �523

Prompt 5. DrEureka system prompt for DR generation.
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� 524
The task is to train a quadruped robot to run on a variety of terrains indoor and outdoor. The goal of the robot is to 525

run forward at 2.0 m/s while remaining steady and safe in the real world. 526
The robot will be trained in simulation and then deployed in the real world. 527
Our parameters and valid ranges are the following: 528

friction_range = [0.0, 10.0] 529
restitution_range = [0.0, 1.0] 530
added_mass_range = [-5.0, 5.0] 531
com_displacement_range = [-0.1, 0.1] 532
motor_strength_range = [0.5, 2.0] 533
Kp_factor_range = [0.5, 2.0] 534
Kd_factor_range = [0.5, 2.0] 535
dof_stiffness_range = [0.0, 1.0] 536
dof_damping_range = [0.0, 0.5] 537
dof_friction_range = [0.0, 0.01] 538
dof_armature_range = [0.0, 0.01] (This is the range of values added onto the diagonal of the joint inertia matrix 539
.) 540
push_vel_xy_range = [0.0, 1.0] (This is the range of magnitudes of a vector added onto the robot’s xy velocity.) 541
gravity_range = [-1.0, 1.0] (This is the range of values added onto each dimension of [0.0, 0.0, -9.8]. 542

For example, [0.0, 0.0] would keep gravity constant.) 543� � 544

Prompt 6. DrEureka quadruped prompt with RAPP from DrEureka policy. This prompt corresponds to the ’Our Method’ configuration
in Table 1.� 545
The task is to train a quadruped robot to balance on a yoga ball for as long as possible. 546
The robot will be trained in simulation and then deployed in the real world. Please note that our simulation 547

environment models the ball as a solid rigid object, so the robot will not be able to deform the ball in any way. 548
However, our real yoga ball is hollow, bouncy, and deformable, so the robot will need to adapt to this 549

difference. Please keep this in mind when designing your domain randomization. 550
Our parameters and valid ranges are the following: 551

robot_friction_range = [0.1, 1.0] 552
robot_restitution_range = [0.0, 1.0] 553
robot_payload_mass_range = [-1.0, 5.0] 554
robot_com_displacement_range = [-0.1, 0.1] 555
robot_motor_strength_range = [0.9, 1.1] 556
robot_motor_offset_range = [-0.01, 0.1] 557
ball_mass_range = [0.5, 5.0] 558
ball_friction_range = [0.1, 3.0] 559
ball_restitution_range = [0.0, 1.0] 560
ball_drag_range = [0.0, 1.0] 561
terrain_ground_friction_range = [0.0, 1.0] 562
terrain_ground_restitution_range = [0.0, 1.0] 563
terrain_tile_roughness_range = [0.0, 0.1] 564
robot_push_vel_range = [0.0, 0.5] 565
ball_push_vel_range = [0.0, 0.5] 566
gravity_range = [-0.5, 0.5] 567� � 568

Prompt 7. DrEureka globe walking prompt with RAPP from DrEureka policy.

E4. Domain Randomization Generation Ablation Prompts 569

This section includes prompts used in ablation experiments that test the importance of RAPP priors in the LLM prompt. 570
Below, we include a prompt with no prior context and a prompt whose context is the entire range tested by the RAPP 571
algorithm. 572� 573
The task is to train a quadruped robot to run on a variety of terrains indoor and outdoor. The goal of the robot is to 574

run forward at 2.0 m/s while remaining steady and safe in the real world. 575
The robot will be trained in simulation and then deployed in the real world. 576
Our parameters are the following: 577

friction_range 578
restitution_range 579
added_mass_range 580
com_displacement_range 581
motor_strength_range 582
Kp_factor_range 583
Kd_factor_range 584
dof_stiffness_range 585
dof_damping_range 586
dof_friction_range 587
dof_armature_range (This is the range of values added onto the diagonal of the joint inertia matrix.) 588
push_vel_xy_range (This is the range of magnitudes of a vector added onto the robot’s xy velocity.) 589
gravity_range (This is the range of values added onto each dimension of [0.0, 0.0, -9.8]. For example, 590

[0.0, 0.0] would keep gravity constant.) 591� � 592

Prompt 8. Initial quadruped prompt (no context). This prompt corresponds to the ’Without Prior’ configuration in Table 1.
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�593
The task is to train a quadruped robot to run on a variety of terrains indoor and outdoor. The goal of the robot is to594

run forward at 2.0 m/s while remaining steady and safe in the real world.595
The robot will be trained in simulation and then deployed in the real world.596
Our parameters and valid ranges are the following:597

friction_range = [0.0, 10.0]598
restitution_range = [0.0, 1.0]599
added_mass_range = [-10.0, 10.0]600
com_displacement_range = [-10.0, 10.0]601
motor_strength_range = [0.0, 2.0]602
Kp_factor_range = [0.0, 2.0]603
Kd_factor_range = [0.0, 2.0]604
dof_stiffness_range = [0.0, 10.0]605
dof_damping_range = [0.0, 10.0]606
dof_friction_range = [0.0, 10.0]607
dof_armature_range = [0.0, 10.0] (This is the range of values added onto the diagonal of the joint608
inertia matrix.)609
push_vel_xy_range = [0.0, 10.0] (This is the range of magnitudes of a vector added onto the robot’s xy610
velocity.)611
gravity_range = [-10.0, 10.0] (This is the range of values added onto each dimension of [0.0, 0.0,612
-9.8]. For example, [0.0, 0.0] would keep gravity constant.)613 � �614

Prompt 9. Initial quadruped prompt (uninformative context). This prompt corresponds to the ’With Uninformative Prior’ configuration in
Table 1.

F. DrEureka Outputs615

In this section, we detail the reward functions generated by DrEureka and applied in the training of forward locomotion616
and globe walking task.617

F1. LLM-Generated Rewards618 �619
def compute_reward(self):620

env = self.env # Do not skip this line. Afterwards, use env.{parameter_name} to access parameters of the621
environment.622

623
# Ideal forward velocity in the x direction624
target_velocity_x = 2.0625
# Ideal height of the robot’s torso626
target_height_z = 0.34627

628
# Compute the velocity reward component629
current_velocity_x = env.root_states[:, 7] # Linear velocity in x from the root_states tensor630
velocity_error = torch.abs(current_velocity_x - target_velocity_x)631
velocity_reward = torch.exp(-velocity_error)632

633
# Compute the height reward component634
current_height = env.root_states[:, 2] # Position in z from the root_states tensor635
height_error = torch.abs(current_height - target_height_z)636
height_reward = torch.exp(-5.0 * height_error) # More weight to maintain height637

638
# Compute the orientation reward component639
# Ideal orientation is perpendicular to gravity, i.e., the projected gravity vector should be [0, 0, -1] in the640
robot’s frame641
ideal_projected_gravity = torch.tensor([0., 0., -1.], device=env.device).repeat((env.num_envs, 1))642
orientation_error = torch.norm(env.projected_gravity - ideal_projected_gravity, dim=1)643
orientation_reward = torch.exp(-5.0 * orientation_error) # More weight to maintain orientation644

645
# Legs movement within DOF limits reward component646
dof_limit_violations = torch.any(647

(env.dof_pos < env.dof_pos_limits[:, 0]) | (env.dof_pos > env.dof_pos_limits[:, 1]),648
dim=-1)649

dof_limit_violations_reward = 1.0 - dof_limit_violations.float() # Penalize if any DOF limit is violated650
651

# Smoothness reward component (penalize the change in actions to encourage smooth movements)652
action_difference = torch.norm(env.actions - env.last_actions, dim=1)653
smoothness_reward = torch.exp(-0.1 * action_difference)654

655
# Combine reward components656
total_reward = velocity_reward * height_reward * orientation_reward * dof_limit_violations_reward *657
smoothness_reward658

659
# Debug information660
reward_components = {"velocity_reward": velocity_reward,661

"height_reward": height_reward,662
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"orientation_reward": orientation_reward, 663
"dof_limit_violations_reward": dof_limit_violations_reward, 664
"smoothness_reward": smoothness_reward} 665

return total_reward, reward_components 666� � 667

Prompt 10. Final reward for forward locomotion task from DrEureka.

� 668
def _reward_height(self): 669

env = self.env 670
height_threshold = 2.0 * env.ball_radius 671
height_temperature = 7.0 # Fine-tuned temperature parameter 672
height_exp = torch.exp((env.base_pos[:, 2] - height_threshold) / height_temperature) 673
height_reward = torch.where(env.base_pos[:, 2] >= height_threshold, height_exp, torch.zeros_like(env.base_pos[:, 674
2])) 675
return 1.5 * height_reward # Updated scaling 676

677
def _reward_balance(self): 678

env = self.env 679
balance_temperature = 5.0 # Fine-tuned temperature parameter 680
ball_top = env.object_pos_world_frame.clone() 681
ball_top[:, 2] += env.ball_radius 682

683
feet_dist_to_ball_top = torch.norm(env.foot_positions - ball_top.unsqueeze(1), dim=-1) 684
balance_exp = torch.exp(-feet_dist_to_ball_top / balance_temperature) 685
balance_reward = torch.mean(balance_exp, dim=-1) 686
return 2.0 * balance_reward # Updated scaling 687

688
def _reward_smooth_actions(self): 689

env = self.env 690
action_diff = env.actions - env.last_actions 691
smooth_actions_reward = -torch.mean(torch.abs(action_diff), dim=-1) 692
return 1.0 * smooth_actions_reward # Increase scale of smooth_actions_reward 693

694
def _reward_penalize_large_actions(self): 695

env = self.env 696
large_action_penalty = -torch.mean(torch.abs(env.actions), dim=-1) 697
return 0.3 * large_action_penalty # Increase scaling for penalize_large_actions 698� � 699

Prompt 11. Final reward for globe walking task from DrEureka. Due to a limitation in the original environment’s codebase, the Eureka
reward format here splits each term into a separate function and computes the final reward as a sum of all terms. Besides a minimal change
in the prompt to describe this format, everything else is the same.

F2. LLM-Generated Domain Randomizations 700

In this section, we provide the examples of domain randomization configurations generated by DrEureka given Reward- 701
Aware Physics Prior. 702� 703
# Friction is important as it affects how the robot interacts with different surfaces (indoor, outdoor). 704
friction_range = [0.5, 5.0] # Moderate range to cover various surfaces like tiles, grass, dirt, etc. 705

706
# Restitution affects how the robot bounces off surfaces or objects; however, for a running task, this might be less 707

critical. 708
restitution_range = [0.0, 0.5] # Lower range as we’re not focusing on bouncing, but it’s still relevant for minor 709

impacts. 710
711

# Added mass simulates the effect of carrying additional weight, which could influence stability and motor strength 712
requirements. 713

added_mass_range = [-2.0, 2.0] # A moderate range to simulate carrying light payloads or none. 714
715

# Center of mass displacement affects stability and maneuverability. 716
com_displacement_range = [-0.05, 0.05] # Slight displacements to ensure the model can handle minor imbalances. 717

718
# Motor strength directly affects the robot’s ability to move and respond to commands. 719
motor_strength_range = [0.75, 1.75] # A moderate range allowing for variability in motor performance. 720

721
# Kp_factor (proportional gain) and Kd_factor (derivative gain) influence the control loop’s responsiveness and 722

stability. 723
Kp_factor_range = [0.75, 1.5] # A range that allows for experimenting with control responsiveness without becoming 724

unstable. 725
Kd_factor_range = [0.75, 1.5] # Similar to Kp to ensure controllability under various conditions. 726

727
# Degrees of freedom (DOF) stiffness and damping affect how rigid and shock-absorbing the joints are, respectively. 728
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dof_stiffness_range = [0.2, 0.8] # A range that allows for some variation in joint stiffness without being too rigid729
or floppy.730

dof_damping_range = [0.1, 0.4] # Provides variability in how the robot absorbs shocks and returns to equilibrium.731
732

# DOF friction and armature values are very specific parameters that could affect energy efficiency and precision in733
movements.734

dof_friction_range = [0.0, 0.005] # Small range based on the minor impact it has on performance but still considering735
efficiency.736

dof_armature_range = [0.0, 0.005] # Minimally varies the joint inertia to see the effects on stability and precision.737
738

# Push velocity in the xy plane simulates external forces or disturbances, e.g., wind or collisions.739
push_vel_xy_range = [0.0, 0.5] # A range to help the robot learn to stabilize against moderate disturbances.740

741
# Gravity variations can simulate different loading conditions or slight inclines/declines the robot might face.742
gravity_range = [-0.2, 0.2] # Small tweaks to represent minor slopes or variations the robot might need to adapt to.743

744
# Note: Each range is chosen with the thought of exposing the robot to a variety of conditions it might face in the745

real world746
# without making the task unnecessarily difficult to learn within our compute budget.747 � �748

Prompt 12. Example DrEureka DR configuration for forward locomotion.

�749
# Friction between the robot and the ball is crucial because it affects how well the robot can balance and maneuver on750

the ball. Since the real ball can be less predictable, a wider range should promote adaptability.751
robot_friction_range = [0.1, 1.0]752

753
# Restitution, or bounciness, will affect how the robot interacts with surfaces upon collision. Though the simulation754

does not account for ball deformation, varying restitution can simulate the unpredictability of these755
interactions.756

robot_restitution_range = [0.2, 0.8]757
758

# Since the payload will directly affect the robot’s balance and how it responds to shifts in weight, we allow for759
variability but avoid extreme negative values to maintain realism.760

robot_payload_mass_range = [0.0, 3.0]761
762

# Center of mass displacement affects balance and stability. Randomization within a moderate range can prepare the763
robot for shifts in its own weight distribution.764

robot_com_displacement_range = [-0.05, 0.05]765
766

# Motor strength is critical for moving and balancing. A narrow range ensures the robot remains capable of movement767
but can adapt to variability in its actuation power.768

robot_motor_strength_range = [0.95, 1.05]769
770

# Motor offsets will simulate imperfections in actuator performance. Randomizing this could prepare the robot for real771
-world inaccuracies.772

robot_motor_offset_range = [-0.005, 0.05]773
774

# The ball’s mass will significantly impact how the robot interacts with it. Since the ball is hollow and can be775
deformed, a middle-range should provide a good balance between too light and too heavy.776

ball_mass_range = [1.0, 3.0]777
778

# Ball friction and restitution are critical for preparing the robot to interact with a bouncy and deformable ball.779
These ranges allow for significant variability.780

ball_friction_range = [0.5, 2.5]781
ball_restitution_range = [0.4, 0.9]782

783
# Ball drag simulates air resistance, which could affect interactions at higher speeds.784
ball_drag_range = [0.1, 0.5]785

786
# The robot might not always operate on similar terrains, so simulating a range of frictions can be beneficial.787

However, the restitution of the ground is less critical here.788
terrain_ground_friction_range = [0.2, 0.8]789
terrain_ground_restitution_range = [0.0, 0.5]790

791
# Terrain roughness could influence balance and traction, so a slight variation can introduce realistic challenges792

without overwhelming the learning process.793
terrain_tile_roughness_range = [0.02, 0.08]794

795
# Varying the push velocities can help the robot learn to maintain balance against unexpected forces.796
robot_push_vel_range = [0.1, 0.4]797
ball_push_vel_range = [0.1, 0.4]798

799
# Considering the task does not involve drastic changes in gravity, we only slightly vary this to simulate minor800

differences in weight sensation.801
gravity_range = [-0.1, 0.1]802
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� � 803

Prompt 13. Example DrEureka DR configuration for globe walking.

G. Mathematical Representation of DrEureka Rewards 804

In this section, we convert the programmatic human-written and LLM-generated reward functions into mathematical expres- 805
sions for comparison. 806

Symbol Explanation

vtx, vx Agent’s and target’s linear velocity along the x-axis.
ωt
z, ωz Agent’s and target’s angular velocity around the z-axis.

vz Velocity along the z-axis.
ωxy Velocities in the roll and pitch directions.
ptz, pz Agent’s and target’s base height.
gxy Base orientation in the horizontal plane.
j, jl, jh Joint position and lower, upper joint limits.
τ Applied torques.
j̈ Joint acceleration.
at, at−1 Consecutive actions to measure smoothness and action rate.
tair Feet airtime during next contact transitions.
foot position, ball top position 3D Positions of the robot foot and the top of the ball.

Table 5. Explanation of Symbols Used in Reward Function Tables.

Term Symbol

Linear velocity tracking 0.02 ∗ exp{−(vx − vtx)
2/0.25}

Angular velocity tracking 0.01 ∗ exp{−(ωz − ωt
z)

2/0.25}
Z-velocity penalty −0.04 ∗ v2z
Roll-pitch-velocity penalty −0.001 ∗ |ωxy|2
Base height penalty −0.6 ∗ (pz − ptz)

2

Base orientation penalty −0.1 ∗ |gxy|2
Collision penalty −0.02 ∗ 1[collision]
Joint limit penalty −0.2 ∗ (max(0, jl − j) + max(0, j − jh))
Torque penalty −2e− 6 ∗ |τ |2
Joint acceleration penalty −5e− 9 ∗ |j̈|2
Action rate penalty −2e− 4 ∗ |at − at−1|2
Feet airtime 0.02 ∗

∑
tair ∗ 1[next contact]

Table 7. Human-written reward function for forward loco-
motion. The total reward is the sum of the components above.

Term Symbol

Forward velocity exp{−(vx − vtx)
2/2}

Action smoothness −0.25 ∗ |at − at−1|
Angular velocity −0.25 ∗ ∥ωxyz∥2
Eureka reward Forward velocity + Action smoothness

+ Angular velocity

Table 8. Final reward for forward locomotion from Eureka with-
out safety instruction.

Term Symbol

Velocity exp{−(|vx − vtx|)}
Height exp{−5.0 ∗ |pz − ptz|}
Orientation exp{−5.0 ∗ ∥gxy − gtxy∥2}
DOF violations 1.0− 1[j < jl ∪ j > jh]
Action smoothness exp{−0.1 ∗ ∥at − at−1∥2}
DrEureka reward velocity * height * orientation

* DOF violations * action smoothness

Table 6. DrEureka reward function for quadruped lo-
comotion. The cumulative reward is a product of the terms
above.

13



CVPR
#*****

CVPR
#*****

CVPR 2024 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Term Symbol

Height 1.5 ∗ 1{pt
z>pz} ∗ exp{

pt
z−pz

7 }
Balance 2 ∗ exp{−∥foot position−ball top position∥

5 }
Action smoothness −1 ∗ |at − at−1|
Large Action Penalty −0.3 ∗ |at|
Eureka reward Height + Balance +

Action smoothness + Large Action Penalty

Table 9. Final reward for the walking globe task.

H. Experimental Setup807

H1. Forward Locomotion808

For the forward locomotion task, our policy takes joint positions, joint velocities, a gravity vector, and a history of past809
observations and actions as input. It produces joint position commands for a PD controller, which has a proportional gain of810
20 and derivative gain of 0.5.811

We extend the simulation setup from Margolis et al. [5], and we include additional domain randomization parameters,812
specifically joint stiffness, damping, friction, and armature that were not in the their work. These parameters, along with the813
others in Table 10, were randomized during training. We chose these parameters based on IsaacGym’s documentation on814
rigid body, rigid shape, and DOF properties2.815

Property Valid Range RAPP Search Range

friction [0,∞) [0, 10]
restitution [0, 1] [0, 1]
payload mass (−∞,∞) [−10, 10]
center of mass displacement (−∞,∞) [−10, 10]
motor strength [0,∞) [0, 2]
scaling factors for proportional gain [0,∞) [0, 2]
scaling factors for derivative gain [0,∞) [0, 2]
push velocity [0,∞) [0, 10]
gravity (−∞,∞) [−10, 10]

dof stiffness [0,∞) [0, 10]
dof damping [0,∞) [0, 10]
dof friction [0,∞) [0, 10]
dof armature [0,∞) [0, 10]

Table 10. Domain randomization parameters for forward locomotion, along with their valid ranges and RAPP search ranges.
Though the scale of these parameters differs, each RAPP range is chosen from one of four general-purpose ranges (0 to infty, 0 to 1,
centered 0, centered 1).

H2. Globe Walking816

For globe walking, we largely extend the framework from forward locomotion, with a few exceptions. First, the policy takes817
in an additional yaw sensor as input. Second, to account for actuator inaccuracies in the real world, we use an actuator818
network from Ji et al. [20]; this network is pretrained on log data to predict real robot torques from joint commands, and819
we use it to compute torques from actions in simulation when training the quadruped. Third, we have additional domain820
randomization parameters, shown in Table 11.821

In the real world, we deploy our quadruped on a 34-inch yoga ball. We did not have a stable pole to tether our quadruped,822
so we instead resort to a human holding the end of the leash; however, we are careful to hold the leash parallel to the ground823
to ensure that the human does not provide any upward force that might aid the robot, and our sole purpose is to keep the robot824
within a safe radius.825

2Relevant functions in the documentation are isaacgym.gymapi.RigidBodyProperties, isaacgym.gymapi.RigidShapeProperties,
isaacgym.gymapi.Gym.get actor dof properties(). Note that among these properties, there are a few fields that we found had no effect in
simulation. We discarded them for our domain randomization.
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Property Valid Range RAPP Search Range

robot friction [0,∞) [0, 10]
robot restitution [0, 1] [0, 1]
robot payload mass (−∞,∞) [−10, 10]
robot center of mass displacement (−∞,∞) [−10, 10]
robot motor strength [0,∞) [0, 2]
robot motor offset (−∞,∞) [−10, 10]

ball mass [0,∞) [0, 10]
ball friction [0,∞) [0, 10]
ball restitution [0, 1] [0, 1]
ball drag [0,∞) [0, 10]

terrain friction [0,∞) [0, 10]
terrain restitution [0, 1] [0, 1]
terrain roughness [0,∞) [0, 10]

robot push velocity [0,∞) [0, 10]
ball push velocity [0,∞) [0, 10]
gravity (−∞,∞) [−10, 10]

Table 11. Domain randomization parameters for globe walking, along with their valid ranges and RAPP search ranges.
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