
Sim2Real Transfer for Audio-Visual Navigation with Frequency-Adaptive
Acoustic Field Prediction

Changan Chen1∗, Jordi Ramos1∗, Anshul Tomar1∗, Kristen Grauman1,2

1. Extended Abstract

(For full paper and supplemantry video, see vi-
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Navigation is an essential ability of autonomous robots,
allowing them to move around in the environment and exe-
cute tasks such as delivery, search and rescue. Sometimes,
the robot also needs to hear the environment and navigate
to find where the sound comes from, e.g., when someone is
asking for help in a house, or when the fire alarm goes off.

Navigation has been extensively studied in the robotics
community and has been traditionally approached with Si-
multaneous Localization and Mapping (SLAM) [3] with Li-
dar sensors. This approach however is limited to geometry
planning and does not reason well about the semantics of
the scene. In addition, building robots and reproducing ex-
periments are expensive for real robots.

To address these issues, recent years have witnessed re-
search approaching the navigation problem from a vision-
centric perspective, i.e., the robot mainly uses visual sen-
sors to perceive the scene [10]. This approach has demon-
strated a lot of success in photorealistic real-scanned en-
vironments, which allow fast experimentation and replica-
ble research. Various forms of tasks have been proposed in
this domain including using egocentric vision to travel to a
designated point in an unfamiliar environment [13, 19, 22],
search for a specified object [2, 5], or explore and map a
new space [4, 8, 17]. Some other works further explore ex-
panding the sensory suite of the navigating agent to include
hearing as well. In particular, the AudioGoal task [6, 11]
requires an agent to navigate to a sounding target (e.g., a
ringing phone) using audio for directional and distance cues
while using vision to avoid obstacles in the unmapped envi-
ronment.

With the success of these learning-based navigation sys-
tems in photorealistic simulation environments, some work
explores transferring the learned policy to the real world
by bridging the gap between the simulation and the real
world [1, 14, 16, 21]. Recent work [12] does sim2real
transfer for audio-visual navigation with data augmentation
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Figure 1. Our robot predicts an acoustic field with a frequency-
adaptive model and navigates to locate the sound source.
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Figure 2. Navigation pipeline. The model first predicts the acous-
tic field, samples the peak as the long-term goal, and navigates
toward the goal with a path planner.

however without further investigating the acoustic gap. The
sound differs from light in that it spans a wide range of
frequencies, which is one of the main barriers to sim2real
transfer. In this work, we perform a systematic evaluation
of the acoustic gap and propose a solution to bridge that
gap.

State-of-the-art approaches in audio-visual navigation
rely on reinforcement learning to train the navigation pol-
icy end-to-end [6, 7], which is not only hard to interpret but
also impractical to generalize to the real world directly due
to various sim2real gaps. Recent visual navigation work has
shown success in sim2real transfer with hierarchical mod-
els [1, 17], which typically consist of a high-level path plan-
ner and low-level motion planner. This design helps abstract
away some of the low-level physical discrepancies.

Inspired by such methods, we design a modular approach
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Figure 3. Acoustic field prediction model. The model first extracts
audio and visual features, and then tiles, and concatenates both
features to predict the acoustic field.

SR ↑ SPL ↑ Soft SPL ↑
Random 0.01 0.07 0.12

DDPPO [20] 0.82 0.63 0.66
Direction Follower [8] 0.67 0.50 0.48

Beamforming [15] 0.02 0.01 0.24
Gan et al. [11] 0.63 0.53 0.68

AFP w/ predicting max 0.54 0.34 0.38
AFP w/o vision 0.84 0.71 0.72

AFP (Ours) 0.91 0.76 0.75

Table 1. Results of the AudioGoal navigation experiment. Our
model strongly outperforms the SOTA method on this benchmark.

to ease the transfer from the simulation to the real world. To
achieve this, we confront a key question: what is the proper
high-level planning task that can survive sim2real transfer
for audio-visual navigation? To this end, we propose a novel
prediction task: acoustic field prediction—predicting the lo-
cal sound pressure field around the agent (The gradient of
this field reflects the direction of the sound). Measuring
acoustic fields is expensive in the real world since it requires
simultaneously capturing the sound pressure of all points
in the field due to the dynamic nature of sound. However,
they are free to compute in simulation. We first build an
audio-visual model (see Fig. 3) as the acoustic field predic-
tor (AFP) and curate a large-scale acoustic field dataset on
SoundSpaces 2.0 [9], the state-of-the-art audio-visual sim-
ulation platform. We show that this approach outperforms
existing methods on the Continuous AudioGoal navigation
benchmark (see Tab. 1).

After validating the proposed approach in simulation,
we then investigate where acoustic discrepancy arises. It
is known that ray-tracing-based acoustic simulation algo-
rithms introduce more errors with lower frequencies due to
wave effects [18]. Given this observation, we focus on eval-
uating how the sim2real error changes as a function of fre-
quencies. We first collect real acoustic field data with the
source sound being white noise, whose audio energy uni-
formly spans across all frequencies. We then train acous-
tic field prediction models that only take the sub-frequency
band of the input audio and test it on the real white noise
data. By computing the errors across multiple samples, we

Figure 4. Sim2real error as a function of frequencies. We report
the mean and standard deviation of distance errors between the
predicted and the ground truth peak locations.

Angle ↓ Distance ↓
Random 1.57 1.45

All-freq AFP 0.22 0.74
Best-freq AFP 0.20 0.74

Highest-energy AFP 0.04 0.70
FA-AFP (Ours) 0.04 0.63

Table 2. Results for testing on real acoustic field data.

show that the errors do not strictly go down as the frequency
goes higher, and using the best frequency band yields er-
rors smaller than using all frequencies for the white noise
sound (see Fig. 4). However, simply taking the best fre-
quency band doesn’t work for all sounds since different
sounds have different spectral distributions. To address this
issue and make the model aware of the spectral difference,
we propose a novel frequency-adaptive prediction strategy,
that intelligently selects the best frequency sub-band based
on measured errors as well as the received spectral distribu-
tion to predict the acoustic field. To validate this approach,
we collect more acoustic field data with various sounds and
show that the frequency-adaptive model leads to the low-
est error on the real data compared to other strategies (see
Tab. 2). Lastly, we build a robot platform that equips the
Hello Robot with a 3Dio binaural microphone and then de-
ploy our trained policy on this robot. We show that our
robot can successfully navigate to various sounds with our
trained frequency-adaptive acoustic field prediction model
(see Fig. 1 and Supp. video).

In summary, we propose a novel acoustic field predic-
tion approach that learns to navigate without interaction
with the environment. This approach improves the SOTA
methods on the challenging Continuous AudioGoal navi-
gation benchmark. We perform a systematic evaluation of
the sim2real and propose a frequency-adaptive strategy as
the treatment for sim2real. We show this strategy works on
both collected real data as well as on our robot platform.
To the best of our knowledge, this is the first work to in-
vestigate and propose a principal solution to the sim2real
transfer problem for audio-visual navigation.
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