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Figure 1. Overview of a proposed approach for action understanding generation. Our approach consists of two stages. In the first stage
(a), M-LLM explores the environment while storing experiences and generating action outputs with modules and memory, then the guider
checks the validity of M-LLM outputs. In the second stage (b), M-LLM utilizes its structured memory to generate action understandings
and summarizes them into one.

1. Introduction
Recent advancements in large language models (LLMs)
have demonstrated their capability to be applied to var-
ious Embodied AI environments [3, 4, 6, 8], operating
more flexibly through planning without the need for training
[9, 11, 12]. However, it is difficult for LLMs to immediately
understand environments that are new and have not been ob-
served without fine-tuning [2, 13], and even using the super-
vised data samples as in-context input does not considerably
improve the performance [9]. Existing LLM agent studies
[12–14] have aimed to enhance performance by augment-
ing memory [12], leveraging environmental textual infor-
mation [13], or utilizing predefined action knowledge [14].
However, these approaches have limitations; memory con-
tents are not entirely understandable texts [12], they require
textual environmental data [13], and they incur high costs
[14]. To address these issues, we propose environmental un-
derstanding generation using a multi-modal large language
model (M-LLM). It interacts directly with environments,
stores experiences in memory, and generates action under-
standing based on these experiences. These generated un-
derstandings aid LLMs in task-based action planning. In
summary, our contributions are as follows:
• We propose a novel approach to generating action under-

standing from M-LLM to augment LLM in embodied AI
tasks.

• We introduce a method that M-LLM directly interacts
with the environment through information from multiple
modules stored in memory. Furthermore, we summarize
the constructed memory to build action understanding.

• In experimental results, our approach outperforms base-
lines by utilizing generative action understanding.

2. Method
In this section, we propose a novel two-stage approach to
generate action understanding. The first stage involves M-
LLM interacting with the environment and storing informa-
tion in memory. In the second stage, M-LLM generates ac-
tion understanding based on the constructed memory. The
generated action understanding will be bundled into a single
paragraph and input into the LLMs prompt.

2.1. M-LLM Exploration
Overview. To enable M-LLM to directly interact with the
environment, it generates one executable action based on
predictive information about the environment from various
modules. At each time step t, the information is stored in
memory, and M-LLM performs exploration and interaction
actions randomly for the specified N steps, as shown in Fig-
ure 1 (a).
Action space. The action space A that M-LLM gener-
ates is specified depending on the environment, where A =
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Figure 2. Generated action understandings by M-LLM.

[a1, a2, ..., an], e.g., MoveAhead and PickupObject in AL-
FRED [7].
Location Adder. The location adder is utilized to generate
actions that enable the exploration of various locations from
previous positions during navigation. At each time step t,
the 2D coordinates lt = (xt, yt) are updated based on the
outcome of the action, allowing exploration of different lo-
cations.
Memory. For each scene, the memory module stores pre-
vious experiences during exploration to generate action un-
derstanding. Additionally, M-LLM generates a caption for
the current frame and stores the location. Memory M rep-
resents as follows: mt = (ft, ct, ot, at, lt), where t is the
step, mt is an element of M, ft is the frame provided by
the environment, ct is the caption generated by M-LLM for
ft, ot is the list of predicted objects by the object predictor,
at is the action performed by M-LLM, and lt is the location
provided by the location adder.
Guider. We propose a guider module that updates prompts
based on information from memory M. This module en-
sures that when the M-LLM generates invalid responses
within the action space, it uses regular expressions and ad-
ditional prompts to request regeneration. Consequently,
the M-LLM generates valid actions. This process ensures
proper interaction with the environment, enabling the M-
LLM to generate valid actions.

2.2. Action Understanding Generation
We introduce a process for generating action understanding
that can serve as additional information for planning to per-
form using LLM or M-LLM, as shown in Figure 1 (b). To
generate what M-LLM has understood while exploring the
environment, we construct prompts using memory such as
frame ft, action at, current and next step’s locations lt, lt+1,
and current and next step’s captions ct, ct+1 to generate ac-
tion understanding. At this point, action understanding is
only considered for successful action between M-LLM and
the environment. Furthermore, M-LLM generates textual
forms to describe how the environment changes when at is
performed. These understandings are summarized into one
understanding per action when generating all action under-
standings. Figure 2 shows the generated action understand-
ings by M-LLM in ALFRED [7].

3. Experiments
We utilize the ALFRED [7] to run our approach, and we
evaluate in ALFRED [7] and Watch-And-Help (WAH) [6].

Models
ALFRED [7] WAH [6]

SR (%) SG-SR (%)
Baseline Ours Baseline Ours∗

LLaMA2-7B [10] 11.76 11.76 22.50 25.53
LLaMA2-70B [10] 20.58 23.52 36.08 37.50
GPT-4 [1] 38.23 44.11 - -

Table 1. The quantitative result on ALFRED and WAH environ-
ment. SR and SG-SR refer to success rate and sub-goal success
rate, respectively. * refers to the result of transferring ALFRED
understanding.

Figure 3. We evaluate the baseline and our approach on ALFRED.
Our approach successfully plans and executes than the baseline.

Experiments setup. We choose the LLaVA-1.6v-13B
model [5] as our primary M-LLM. To generate action un-
derstanding, we build a memory dataset comprising 20
scenes by randomly selecting from the AI2THOR environ-
ment [4]. We evaluate using the LoTA-Bench benchmark
[2], which utilizes various LLMs to automatically quantify
task planning performance in ALFRED [7] and WAH [6].
Results. Table 1 presents the results of baselines and re-
sults of adding action understanding prompts to LLMs. In
ALFRED, models with large parameters like LLaMA2-70B
and GPT-4 showed increases in success rates, 2.94%, and
5.88%, respectively. Figure 3 shows a successful case in
ours. The LLM plans better using the in-context examples
provided by the action understanding. The WAH results in-
dicate sub-goal success rates for the transferred understand-
ing of similar actions generated in ALFRED. LLaMA2-7B
and LLaMA2-70B showed increases of 3.03% and 1.42%
in sub-goal success rate, respectively. This suggests that
understanding from different environment can enhance suc-
cess rates by utilizing shared concepts across environments.
Note that GPT-4 could not be evaluated on the WAH [6] due
to an error in the provided LoTA benchmark [2].

4. Conclusion and Future Work
Our approach demonstrates increased planning task perfor-
mance when understanding of the action is added to LLMs.
This approach is simple and can be applied to LLMs per-
forming similar tasks. Furthermore, we expect our approach
to be utilized without environmental constraints.
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