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Figure 1. STEVE Series overview.

Abstract

Building an embodied agent system with a large lan-001
guage model (LLM) as its core is a promising direction.002
Due to the significant costs and uncontrollable factors as-003
sociated with deploying and training such agents in the real004
world, we have decided to begin our exploration within the005
Minecraft environment. Our STEVE Series agents can com-006
plete basic tasks in a virtual environment and more chal-007
lenging tasks such as navigation and even creative tasks,008
with an efficiency far exceeding previous state-of-the-art009
methods by a factor of 2.5× to 7.3×. We begin our ex-010
ploration with a vanilla large language model, augment-011
ing it with a vision encoder and an action codebase trained012
on our collected high-quality dataset STEVE-21K. Subse-013
quently, we enhanced it with a Critic and memory to trans-014
form it into a complex system. Finally, we constructed a015
hierarchical multi-agent system. Our recent work explored016

how to prune the agent system through knowledge distilla- 017
tion. In the future, we will explore more potential applica- 018
tions of STEVE agents in the real world. The code, data, 019
and models are available at site. 020

1. Data and Environment 021

The STEVE-21K dataset is integral for training the multi- 022
modal Large Language Models (LLMs) in the STEVE 023
Series, containing 600 Vision-Environment pairs, 20,000 024
Question-Answering pairs, and 210 Skill-Code pairs to en- 025
hance agents’ interaction and task execution in Minecraft. 026
Our simulation environment utilizes MineDojo [1] and 027
Mineflayer [5] APIs, providing a realistic setting for high- 028
fidelity agent performance. 029

2. Multi-Modal LLMs 030

The STEVE Series advances through the integration of 031
Multi-Modal Large Language Models (MLMs), essential 032
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Knowledge QA Tech Tree Mastery

Model preference (↑) Method # iters (↓)

Llama2-13B [8] 6.89 AutoGPT [7] 107
GPT-4 [4] 8.04 Voyager [9] 35

STEVE-13B [11] 8.12 STEVE-1 [11] 33

Table 1. Comparison on Basic Skill. Models preference rated
0-10 on knowledge QA and # iters stand for average iterations for
task fulfillment.

for enhancing agent interactions within Minecraft. From033
STEVE-1 [11], using the fine-tuned STEVE-13B model, to034
STEVE-2 [12] which incorporates advanced visual models035
like LLaVA [2, 3], each version progressively enhances the036
agents’ multimodal processing abilities.037

3. Hierarchical Multi-Agent System038

Introduced in STEVE-1.5, our Hierarchical Multi-Agent039
System enhances multi-agent cooperation for complex navi-040
gation and creation tasks in Minecraft. This system supports041
centralized planning and decentralized execution, enabling042
agents to adjust strategies and dynamically improve interac-043
tion with the environment. STEVE-2 extends this system’s044
capabilities, accommodating a broader range of activities045
and pushing the boundaries of autonomous multi-agent sys-046
tems.047

4. Distill Embodied Agent into a Single Model048

STEVE-2 [12] introduces a hierarchical knowledge distil-049
lation process that refines the alignment of tasks across var-050
ious granularity levels within our agent system. This pro-051
cess incorporates the extra expert to enhance the teacher052
model with prior knowledge, significantly improving train-053
ing quality for complex tasks. By distilling capabilities into054
a single model, STEVE-2 [12] achieves operational sim-055
plicity and superior performance, setting a new benchmark056
in autonomous agent capabilities within Minecraft.057

5. Experiments058

5.1. Basic Skill059

The STEVE series demonstrates prowess in Knowledge060
Question and Answering and Tech Tree Mastery. STEVE-061
13B excels in producing precise Minecraft-related answers,062
surpassing both LLaMA2 [8] and GPT-4 [4]. In Tech Tree063
Mastery, STEVE-1 [11] progresses through Minecraft’s064
tech levels faster than competitors like AutoGPT [7] and065
Voyager [9], showcasing effective use of its vision unit to066
handle complex crafting tasks.067

Method # LLMs Goal Search Map Explore

success (↑) # area (↑)

Voyager [9] 12 / 20 64% 755

STEVE-1 [11] 20 / 24 64% 696

STEVE-2 [12] 5 / 8 91% 1493

Table 2. Comparison on Navigation. We list the success rate
of Goal Search. # area is the average squares of blocks over 5
iterations. We list the best performance with the number of LLMs
for different tasks.

Method # LLMs Material Collection Building Creation

completion (↑) FID (↓)

Voyager [9] 4 72% 256.75

Creative Agents [10] 4 - 68.32

STEVE-2 [12] 8 / 2 99% 21.12

Table 3. Comparison on Creation. We list task completion rates
and average FID scores for image quality. We list the best perfor-
mance with the number of LLMs for different tasks.

5.2. Navigation 068

STEVE-2 [12] excels in multi-modal goal search, continu- 069
ous block search, and map exploration, outperforming ex- 070
isting models by substantial margins. In multi-modal goal 071
search, STEVE-2 identifies goals using various sensory in- 072
puts with performance 5.5 × better than leading LLM-based 073
methods. For map exploration, STEVE-2 updates and ex- 074
pands game maps with 1.9 × the efficiency of previous 075
models, using a dynamic strategy tailored to unexplored ar- 076
eas. 077

5.3. Creation 078

In creation tasks, STEVE-2 [12] significantly outperforms 079
in material collection and building creation. It improves ma- 080
terial gathering efficiency by 19 × over Voyager [9]. Addi- 081
tionally, using a finetuned VQ-VAE [6] for 3D occupancy 082
generation, STEVE-2 enhances the quality of construction, 083
achieving a 3.2 × increase in FID scores and surpassing 084
other models and human evaluations in creative task perfor- 085
mance. 086

6. Conclusion 087

The STEVE series has achieved substantial progress 088
in multi-modal and hierarchical agent systems within 089
Minecraft, excelling in tasks of basic skill, navigation, and 090
creation. 091

Future Work The next goal is to adapt the STEVE se- 092
ries’ sophisticated agent technologies for practical applica- 093
tions in complex, dynamic real-world environments. 094
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