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Abstract

Tasks involving human-robot interaction demand seam-
less collaboration between the two within indoor settings.
Habitat 3.0 [11] introduced a novel Social Navigation task
where agents find, track, and follow humans while avoid-
ing collisions. Their baselines show that performance re-
lies heavily on human GPS availability. However, indoor
GPS sensors are rarely reliable in real-life and it may be
impractical to provide GPS for every human in the scene.
In this work, we tackle the issue of realistic social nav-
igation by relaxing the human GPS requirement at ev-
ery time step. We achieve this via a curriculum learn-
ing strategy for training an RL policy capable of finding
and tracking humans with sparse or no reliance on human
GPS observations. Our experiments demonstrate the ef-
fectiveness of our curriculum strategy, achieving compa-
rable performance to the baselines with lesser samples,
using a single GPS observation at the beginning of the
episode. The project website and videos can be found at
gchhablani.github.io/socnav-curr.

1. Introduction

Embodied navigation in indoor environments has been
a long-standing challenge [1] in robotics and artificial in-
telligence. Recent works [9, 14, 18] have leveraged deep
reinforcement learning to address these tasks. Several prior
works [12, 13] in this area assume that the GPS location of
the goal is provided to the agent at each timestep. Some
works have attempted to relax this assumption through var-
ious means such as visual odometry [4, 10] and information
bottleneck [7].

Recently, Habitat 3.0 [11] proposed a Social Navigation
(SocialNav) task where the agent is spawned in an indoor
scene with a human and the agent is tasked with finding
and following the human at a safe distance while avoiding
collisions. They propose an end-to-end RL baseline which
uses the human GPS location at each timestep. However,
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it is impractical in real environments to rely heavily on in-
door GPS systems and to expect GPS availability for each
human in the environment. Therefore, we attempt to ad-
dress a more realistic SocialNav task by learning a policy
that only has access to infrequent human GPS location dur-
ing the episode. We realize this by leveraging curriculum
training on the GPS location.

Curriculum learning [3] involves starting with easy ver-
sions of a task and gradually increasing difficulty until the
original task is mastered. Various curriculum strategies are
applied in RL scenarios, such as reverse curriculum genera-
tion [5] and accuracy-based curriculum learning [6]. In nav-
igation tasks, [2, 16, 17] employ curriculum learning based
on distance to goal or waypoint/trajectory decomposition,
while [8] focuses on environment difficulty. Inspired by
[15], we design a curriculum strategy that operates on the
human GPS availability in SocialNav. Via a curriculum, we
show that the agent with no access to GPS can learn a pol-
icy that performs at least as good as an agent with no GPS
sensor, and reaches its peak finding success much earlier.

2. Metholodogy
We use the standard RL setting (same as [11]), modeling

the SocialNav task as a partially-observable Markov Deci-
sion Process. The observations at each timestep are derived
from four simulation sensors: an arm depth camera, an arm
RGB camera, a humanoid detector, and a humanoid GPS
sensor. We perform experiments with relaxed GPS avail-
ability condition. We present two different ways to repre-
sent the human GPS location for timesteps where the cur-
rent human GPS location is unavailable:
• ZeroGPS (ZGPS): Provides (0, 0) as GPS location.
• LastGPS (LGPS): Provides the last known GPS location.

2.1. Human GPS Availability Curriculum

Without human GPS sensor, the finding success rate (FS)
drops significantly [11]. Thus, we hypothesize that: (1) A
policy with consistent GPS information relies heavily on
that information; and (2) An adaptive policy trained via cur-
riculum on GPS availability would enable the agent to retain
desirable properties for the task.
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During training, initially GPS information is available
at every step. Then, based on upper and lower training
FS score thresholds, we either decrease or increase the fre-
quency of GPS availability, thereby making the task harder
or easier. The goal of the curriculum is to eventually reach a
difficulty level where GPS is never available after timestep
0 and the policy is still performant. The curriculum level K
in our experiments ranges from [1, 1500], corresponding to
the interval in the episode at which agent has access to the
current GPS sensor information. We train for 300M steps,
and check every 10M steps if the curriculum level needs to
be updated. Additionally, we use the first 10M as warmup
steps so the agent achieves a good FS with full GPS condi-
tions. The upper threshold is 0.9 and lower threshold is set
to 0.8, 0.85, 0.88 for 0-100M, 100-200M, and 200-300M
steps during training, respectively. In this work, we explore
various approaches for updating the curriculum:
• Additive (Add): The curriculum increments (+50) or

decrements (-25) a fixed value based on FS.
• Multiplicative (Mul): The curriculum doubles or halves

its current GPS frequency depending on FS.
• Dynamic Add (Dyn-Add): Adds [30, 60] or subtracts
[10, 80], a dynamic value that scales with training FS.

3. Experiments and Results
3.1. Metrics and Evaluation

We evaluate our policies on 500 unseen episodes and
borrow the metrics from [11]. ZGPS evaluation assumes
a fixed GPS observation of (0,0) at each step, while LGPS
receives only the initial human GPS at every time step.

3.2. Baselines

We consider two baselines: Full (Human GPS ob-
served at every timestep [11]), and NoGPS (No GPS sen-
sor). The evaluation results in Figure 1 show that the
NoGPS baseline achieves 0.92 eval FS but inconsistent per-
formance. Full achieves near-perfect performance (0.98
eval FS) consistently.

Figure 1. Eval FS for best-performing curriculum policies

Experiment FS (↑) FR (↑) SPS (↑) CR (↓) R (↑)
NoGPS 0.92 0.72 0.52 0.52 6770.28
Full 0.98 0.68 0.52 0.59 6079.23

Mul-ZGPS 0.52 0.06 0.02 0.40 31.07
Add-ZGPS 0.92 0.66 0.44 0.60 4941.44

Dyn-Add-ZGPS 0.89 0.60 0.41 0.63 4784.58
Mul-LGPS 0.92 0.63 0.38 0.64 4044.00

Dyn-Add-LGPS 0.92 0.65 0.44 0.62 5364.39
Add-LGPS 0.91 0.71 0.51 0.54 6605.48

Table 1. Evaluation results on checkpoints with the highest FS.

3.3. ZeroGPS vs LastGPS

For brevity, we depict only the top two curriculum
strategies in Figure 1. Dyn-Add-LGPS outperforms
Add-ZGPS, requiring fewer iterations for similar perfor-
mance, indicating its higher sample efficiency. Table 1 con-
firms the superior performance of LGPS over ZGPS. This
result is likely due to ZGPS needing to implicitly remember
the latest human GPS observation, whereas LGPS continu-
ally receives the cached human GPS.

3.4. Additive vs Multiplicative vs Dynamic Additive

From Table 1, we observe that FS for Add-ZGPS and
Dyn-Add-LGPS reaches 0.92. Mul-ZGPS strategy per-
forms poorly (0.52 FS) but Mul-LGPS performs well (0.92
FS). If the difficulty updates too rapidly, as in Mul, it
can exacerbate the learning curve. Since LGPS is eas-
ier than ZGPS setting (see Section 3.3), the combination
Mul-ZGPS results in too difficult of a curriculum.

3.5. GPS vs Baselines

Figure 1 shows that our best curriculum strategies
(Add-ZGPS and Dyn-Add-LGPS) perform as good as the
NoGPS baseline, but reach a high performance early on dur-
ing the training. We also observe more stable curves com-
pared to the NoGPS baseline towards the end of training.
This shows that curriculum learning helps in learning a ro-
bust policy with very few samples for finding the human
without relying too much on GPS availability.

4. Conclusion and Future Work

In this work, we use curriculum training to relax the
requirement of human GPS availability in the SocialNav
task. Our approach achieves comparable success rates to
the NoGPS conditions with better stability and using fewer
training samples, demonstrating the effectiveness of our
curriculum learning. In future, we aim to improve on other
metrics such as collision rate and SPS, which currently
lag behind NoGPS. Additionally, we will explore strategies
to encourage active exploration, as we observed instances
where the agent moves in circles until a human is visible.
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