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Figure 1. Interactive Exploration to Construct an Action-Conditioned Scene Graph (ACSG) for Robotic Manipulation. (a)
Exploration: The robot autonomously explores by interacting with the environment to generate a comprehensive ACSG. This graph is used
to catalog the locations and relationships of items. (b) Exploitation: Utilizing the constructed scene graph, the robot completes downstream
tasks by efficiently organizing the necessary items according to the desired spatial and relational constraints.

1. Introduction
Imagine a future household robot designed to prepare break-
fast. This robot must efficiently perform various tasks such
as conducting inventory checks in cabinets, fetching food
from the fridge, gathering utensils from drawers, and spot-
ting leftovers under food covers. Key to its success is the abil-
ity to interact with and explore the environment, especially

to find items that aren’t immediately visible. Equipping it
with such capabilities is crucial for the robot to effectively
complete its everyday tasks.

Robot exploration and active perception have long been
challenging areas in robotics [1–16]. Various techniques
have been proposed, including information-theoretic ap-
proaches, curiosity-driven exploration, frontier-based meth-
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Figure 2. Overview of Our RoboEXP System. We present a comprehensive overview of our RoboEXP system, comprised of four modules.
(a) Our perception module takes RGBD images as input and produces the corresponding 2D bounding boxes, masks, object labels, and
associated semantic features as output. (b) The memory module seamlessly integrates 2D information into the 3D space, achieving more
consistent 3D instance segmentation. Additionally, it constructs the high-level graph of our ACSG through the merging of instances. (c) Our
decision-making module serves dual roles as a proposer and verifier. The proposer suggests various actions, such as opening doors and
drawers, while the verifier assesses the feasibility of each action, considering factors like obstruction. (d) The action module executes the
proposed actions, enabling the robot arm to interact effectively with the environment.

ods, and imitation learning [1, 13–15, 17–25]. Nevertheless,
previous research has primarily focused on exploring static
environments by merely changing viewpoints in a navigation
setting or has been limited to interactions with a small set of
object categories, such as drawers, or a closed set of simple
actions like pushing [26].

In this work, we investigate the interactive scene explo-
ration task, where the goal is to efficiently identify all objects,
including those that are directly observable and those that can
only be discovered through interaction between the robot and
the environment (see Fig. 1). Towards this goal, we present
a novel scene representation called action-conditioned 3D
scene graph (ACSG). Unlike conventional 3D scene graphs
that focus on encoding static relations, ACSG encodes both
spatial relationships and logical associations indicative of
action effects (e.g., opening a fridge will reveal an apple
inside). We then show that interactive scene exploration can
be formulated as a problem of action-conditioned 3D scene
graph construction and traversal.

Tackling interactive scene exploration poses challenges:
how can we reason about which objects need to be explored,
choose the right action to interact with them, and main-
tain knowledge about our exploration findings? With these
challenges in mind, we propose a novel, real-world robotic
exploration framework, the RoboEXP system. RoboEXP
can handle diverse exploration tasks in a zero-shot manner,
constructing complex action-conditioned 3D scene graph
in various scenarios, including those involving obstruct-

ing objects and requiring multi-step reasoning. We eval-
uate our system across various settings, spanning simple,
single-object scenarios to complex environments, demon-
strating its adaptability and robustness. The system also
effectively manages different human interventions. More-
over, we show that our reconstructed action-conditioned 3D
scene graph demonstrates strong capacity in performing mul-
tiple complex downstream tasks. Action-conditioned 3D
scene graph advances LLM/LMM-guided robotic manipula-
tion and decision-making research [27, 28], extending their
operation domain from environments with known or observ-
able objects to complicated environments with unknown or
unobserved ones. To our knowledge, this is the first of its
kind.

Our contributions are as follows: i) we propose action-
conditioned 3D scene graph and introduce the interactive
scene exploration task to address the challenging interaction
aspect of exploration; ii) we develop the RoboEXP system,
capable of exploring complicated environments with unseen
objects in a wide range of settings; iii) through extensive ex-
periments, we demonstrate our system’s ability to construct
complex and complete action-conditioned 3D scene graph,
demonstrating significant potential for various manipulation
tasks. Our experiments involve rigid and articulated ob-
jects, nested objects like Matryoshka dolls, and deformable
objects like cloth, showcasing the system’s generalization
ability across objects, scene configurations, and downstream
tasks.
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