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Abstract

Reinforcement learning (RL) agents equipped with use-
ful, temporally extended skills can learn new tasks more
easily. Prior work in skill-based RL either requires ex-
pert supervision to define useful skills or creates non-
semantically aligned skills from offline data through heuris-
tics, which is difficult for a downstream RL agent to use for
learning new tasks. Instead, our approach, EXTRACT, uti-
lizes pretrained vision models to extract a discrete set of se-
mantically meaningful skills from offline data, each of which
is parameterized by continuous arguments, without human
supervision. This skill parameterization allows robots to
learn new tasks more quickly by only needing to learn when
to select a specific skill and how to modify its arguments for
the specific task. We demonstrate through experiments in
sparse-reward, image-based, robot manipulation environ-
ments, both in simulation and in the real world, that EX-
TRACT can more quickly learn new tasks than prior skill-
based RL, with up to a 10× gain in sample efficiency.

1. Introduction
Imagine learning to play racquetball as a complete novice.
Without prior experience in racket sports, this poses a
daunting task that requires learning not only the (1) com-
plex, high-level strategies to control when to serve, smash,
and return the ball but also (2) how to actualize these moves
in terms of fine-grained motor control. However, a squash
player should have a considerably easier time adjusting to
racquetball as they already know how to serve, take shots,
and return; they simply need to learn when to use these
skills and how to adjust them for larger racquetball balls. In
this paper, we aim to utilize this intuition to enable efficient
learning of new tasks.

In general, humans can learn new tasks quickly—given
prior experience and mastery of relevant skills—by adjust-
ing existing skills for the new task [2, 4]. Skill-based rein-
forcement learning (RL) aims to emulate this efficient trans-
fer learning [1, 3, 8, 12, 13, 15, 18–20] in learned agents by
equipping them with a wide range of skills (i.e., temporally-

extended action sequences) that they can call upon for ef-
ficient downstream learning. Using skills instead of un-
structured, low-level actions, skill-based RL reduces task
time horizons and yields more effective exploration. How-
ever, existing skill-based RL approaches rely on costly hu-
man supervision [3, 9, 12, 16] or restrictive definitions of
skills [1, 6, 13] that limit the expressiveness and adaptabil-
ity of the learned skills. Therefore, we ask: how can robots
discover adaptable skills for efficient transfer learning with-
out costly human supervision?

Calling back to the squash to racquetball transfer ex-
ample, we humans categorize different racket movements
into discrete skills—for example, a “forehand swing” is
distinct from a “backhand return.” These discrete skills
can be directly transferred by making minor modifications
for racquetball’s larger balls and different rackets. This
process is akin to that of calling a programmatic API,
e.g., def forehand(x, y) , where learning to transfer re-
duces to learning when to call discrete functions (e.g.,
forehand() vs backhand() ) and how to execute them

(i.e., what their arguments should be). In this paper, we pro-
pose a method to accelerate transfer learning by enabling
robots to learn, without expert supervision, a discrete set of
skills parameterized by input arguments that are useful for
downstream tasks. We assume access to a general offline
dataset containing image-action pairs trajectories but not the
downstream target tasks. Our key insight is aligning skills
by extracting high-level behaviors from trajectory images,
i.e., discrete skills like “forehand swing,” contained within
the dataset. Specifically, we use video encoders from pre-
trained vision-language models (VLMs), which are trained
to align images with language descriptions [14] so that im-
ages of similar high-level behaviors are embedded to similar
latent embeddings [17]. However, two challenges preclude
realizing this insight: (1) how to align individual embed-
dings into a set of discrete, input-parameterized skills, and
(2) how to guide online learning of new tasks with these
skills.

To this end, we propose EXTRACT (Extraction of
Transferrable Robot Action Skills), a framework for ex-
tracting discrete, parameterized skills from offline data to
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Figure 1. EXTRACT consists of three phases to enable efficient transfer learning. (1) Skill Extraction: We extract a set of high-level
skills from offline robot interaction data by clustering together visual difference embeddings, representing changes in high-level behaviors
of images in each trajectory; here, each cluster corresponds to a high-level behavior (skill). (2) Skill Learning: We aim to obtain a skill
decoder model, pa(ā | z, d), to output variable-length action sequences conditioned on a skill ID d and a learned continuous argument
z. The argument z is learned by training pa(ā | z, d) with a VAE reconstruction objective from action sequences encoded by a skill
encoder, q(z | ā, d), conditioned on the action sequence and skill ID d. We additionally train a skill selection prior and skill argument prior
pd(d | s), pz(z | s, d) to predict which skills d and their arguments z are useful for a given state s. Colorful arrows indicate gradients
from reconstruction, argument prior, selection prior, and VAE regularization losses. (3) Online RL: To learn a new task, we train a skill
selection and skill argument policy with RL while regularizing them with the skill selection and skill argument priors. These skills and
arguments are given to the skill decoder, pa(ā | z, d), and translated into low-level actions to be executed in the environment.

guide online learning of new tasks (see Figure 1). We first
use a pre-trained VLM to extract observation embedding
differences, representing changes in high-level behaviors
over time (i.e., V LM(st) − V LM(s1)), of offline trajec-
tories. Next, we cluster the difference embeddings in an un-
supervised manner to form discrete skill clusters that repre-
sent high-level skills. To parameterize these skills, we train
a skill decoder on these clusters, conditioned on the skill ID
(e.g., representing a “backhand return”) and a learned ar-
gument (e.g., indicating position and velocity), to produce
a skill consisting of a temporally extended, variable-length
action sequence. Finally, to train a robot for new tasks,
we train a skill-based RL policy to act over this skill-space
while being guided by skill prior networks, learned from our
offline skill data, guiding the policy for (1) when to select
skills and (2) what their arguments should be.

2. Experiments

We evaluate EXTRACT on Franka Kitchen [5] and
LIBERO-10 [10], two long-horizon, image-based, robot
manipulation benchmarks with sparse rewards. For both,
we pre-train on scripted or human teleoperation trajectories
and evaluate on unseen, long-horizon tasks. We compare
against: (1) an Oracle [3] which is given discrete, human-
designed skills; (2) SPiRL [13], which randomly segments
sequences of actions into a continuous skill-space; (3) BC,
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Figure 2. Online RL results.

behavior cloning; and (4) SAC [7] as the standard RL base-
line.

Our method EXTRACT uses the R3M VLM [11] and
K-means clustering with K = 8 for offline skill extrac-
tion. Finally, all reported experimental results are means
and standard deviations over 3 seeds.

Results. We can see in Figure 2 that EXTRACT is 10x
more sample-efficient than SPiRL, in yellow, and matches
the Oracle skill (RAPS [3]) method performance in Franka
Kitchen. In LIBERO-10, EXTRACT also outperforms
all other methods, achieving 2x the final performance of
SPiRL. This improvement of our method over SPiRL is
likely due to two reasons: on average, longer skills and a
semantically structured discrete skill space instead of the
random latent skills that SPiRL learns.
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