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Figure 1. Open-World Mobile Manipulation System: We use a full-stack approach to operate articulated objects such as real-world
doors, cabinets, drawers, and refrigerators in open-ended unstructured environments.

Abstract

Deploying robots in open-ended unstructured environ-001
ments such as homes has been a long-standing research002
problem. However, robots are often studied only in closed-003
off lab settings, and prior mobile manipulation work is re-004
stricted to pick-move-place, which is arguably just the tip005
of the iceberg in this area. In this paper, we introduce006
Open-World Mobile Manipulation System, a full-stack ap-007
proach to tackle realistic articulated object operation, e.g.008
real-world doors, cabinets, drawers, and refrigerators in009
open-ended unstructured environments. The robot utilizes010
an adaptive learning framework to initially learns from a011
small set of data through behavior cloning, followed by012
learning from online practice on novel objects that fall out-013
side the training distribution. We also develop a low-cost014
mobile manipulation hardware platform capable of safe015
and autonomous online adaptation in unstructured envi-016
ronments with a cost of around 25, 000 USD. In our ex-017
periments we utilize 20 articulate objects across 4 build-018

ings in the CMU campus. With less than an hour of online 019
learning for each object, the system is able to increase suc- 020
cess rate from 50% of BC pre-training to 95% using online 021
adaptation. Video results at https://open-world- 022
mobilemanip.github.io/. 023

1. Introduction 024

Deploying robotic systems in unstructured environments 025
such as homes has been a long-standing research problem. 026
In recent years, significant progress has been made in de- 027
ploying learning-based approaches [2, 5, 11, 16] towards 028
this goal. However, this progress has been largely made 029
independently either in mobility or in manipulation, while 030
a wide range of practical robotic tasks require dealing with 031
both aspects [4, 8, 15, 18]. The joint study of mobile manip- 032
ulation paves the way for generalist robots which can per- 033
form useful tasks in open-ended unstructured environments, 034
as opposed to being restricted to controlled laboratory set- 035
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tings focused primarily on tabletop manipulation.036

However, developing and deploying such robot systems037
in the open-world with the capability of handling unseen038
objects is challenging for a variety of reasons, ranging from039
the lack of capable mobile manipulator hardware systems040
to the difficulty of operating in diverse scenarios. Conse-041
quently, most of the recent mobile manipulation results end042
up being limited to pick-move-place tasks[9, 12, 17, 19],043
which is arguably representative of only a small fraction of044
problems in this space. Since learning for general-purpose045
mobile manipulation is challenging, we focus on a restricted046
class of problems, involving the operation of articulated ob-047
jects, such as doors, drawers, refrigerators, or cabinets in048
open-world environments. This is a common and essential049
task encountered in everyday life, and is a long-standing050
problem in the community [1, 3, 6, 7, 10, 13, 14]. The pri-051
mary challenge is generalizing effectively across the diverse052
variety of such objects in unstructured real-world environ-053
ments rather than manipulating a single object in a con-054
strained lab setup. Furthermore, we also need capable hard-055
ware, as opening a door not only requires a powerful and056
dexterous manipulator, but the base has to be stable enough057
to balance while the door is being opened and agile enough058
to walk through.059

We take a full-stack approach to address the above chal-060
lenges. In order to effectively manipulate objects in open-061
world settings, we adopt a adaptive learning approach,062
where the robot keeps learning from online samples col-063
lected during interaction. Hence even if the robot encoun-064
ters a new door with a different mode of articulation, or with065
different physical parameters like weight or friction, it can066
keep adapting by learning from its interactions. For such a067
system to be effective, it is critical to be able to learn effi-068
ciently, since it is expensive to collect real world samples.069
The mobile manipulator we use as shown in Figure. 1 has070
a very large number of degrees of freedom, corresponding071
to the base as well as the arm. A conventional approach for072
the action space of the robot could be regular end-effector073
control for the arm and SE2 control for the base to move074
in the plane. While this is very expressive and can cover075
many potential behaviors for the robot to perform, we will076
need to collect a very large amount of data to learn control077
policies in this space. Given that our focus is on operating078
articulated objects, can we structure the action space so that079
we can get away with needing fewer samples for learning?080

Consider the manner in which people typically approach081
operating articulated objects such as doors. This generally082
first involves reaching towards a part of the object (such as083
a handle) and establishing a grasp. We then execute con-084
strained manipulation like rotating, unlatching, or unhook-085
ing, where we apply arm or body movement to manipulate086
the object. In addition to this high-level strategy, there are087
also lower-level decisions made at each step regarding exact088

direction of movement, extent of perturbation and amount 089
of force applied. Inspired by this, we use a hierarchical ac- 090
tion space for our controller, where the high-level action 091
sequence follows the grasp, constrained manipulation strat- 092
egy. These primitives are parameterized by learned low- 093
level continuous values, which needs to be adapted to op- 094
erate diverse articulated objects. To further bias the explo- 095
ration of the system towards reasonable actions and avoid 096
unsafe actions during online sampling, we collect a dataset 097
of expert demonstrations on 12 training objects, including 098
doors, drawers and cabinets to train an initial policy via be- 099
havior cloning. While this is not very performant on new 100
unseen doors (getting around 50% accuracy), starting from 101
this policy allows subsequent learning to be faster and safer. 102

Learning via repeated online interaction also requires ca- 103
pable hardware. As shown in Figure 1, we provide a simple 104
and intuitive solution to build a mobile manipulation hard- 105
ware platform, followed by two main principles: (1) Ver- 106
satility and agility - this is essential to effectively operate 107
diverse objects with different physical properties in poten- 108
tially challenging environments, for instance a cluttered of- 109
fice. (2) Affordabiluty and Rapid-prototyping - Assembled 110
with off the shelf components, the system is accessible and 111
can be readily be used by most research labs. 112

In this paper, we present Open-World Mobile Manipu- 113
lation System, a full stack approach to tackle the problem 114
of mobile manipulation of realistic articulated objects in the 115
open world. Efficient learning is enabled by a structured 116
action space with parametric primitives, and by pretrain- 117
ing the policy on a demonstration dataset using imitation 118
learning. Adaptive learning allows the robot to keep learn- 119
ing from self-practice data via online RL. Repeated inter- 120
action for autonomous learning requires capable hardware, 121
for which we propose a versatile, agile, low-cost easy to 122
build system. We introduce a low-cost mobile manipula- 123
tion hardware platform that offers a high payload, making 124
it capable of repeated interaction with objects, e.g. a heavy, 125
spring-loaded door, and a human-size, capable of maneu- 126
vering across various doors and navigating around narrow 127
and cluttered spaces in the open world. We conducted a 128
field test of 8 novel objects ranging across 4 buildings on 129
a university campus to test the effectiveness of our system, 130
and found adaptive earning boosts success rate from 50% 131
from the pre-trained policy to 95% after adaptation. 132
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