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Abstract

In Vision-and-Language Navigation in Continuous En-
vironments (VLN-CE), agents have to navigate towards a
target goal by executing a set of low-level actions, follow-
ing a series of natural language instructions. All VLN-CE
methods in the literature assume that language instructions
are exact. However, in practice, instructions given by hu-
mans can contain errors. For the first time, we propose
a novel benchmark dataset that introduces various types
of instruction errors considering potential human causes,
providing valuable insight into the robustness of VLN-CE
agents. Moreover, we formally define the task of Instruction
Error Detection and Localization, and propose a method that
achieves best performances compared to baselines. Project
page at https://intelligolabs.github.io/R2RIE-CE

1. Introduction
The emerging research on Vision-and-Language Naviga-
tion (VLN) [3, 6] aims to develop embodied agents that,
following a given instruction in the format of natural lan-
guage, can reach a target destination in a 3D environment.
To facilitate the study of VLN, many benchmark datasets
have been proposed [3, 5, 7, 8, 10]. All the previous bench-
marks, however, only consider correct language instructions.
This consideration can be brittle in reality as human often
gives instructions that are approximate or ambiguous, or
even prone to error as based on their memory. In this work,
we first formally define the types of errors that may occur
in language instructions for the VLN task in indoor environ-
ments, including Direction, Room, Object, Room&Object
and a combination of All types of errors. Based on these
definitions, we propose a novel benchmark in continuous
environments built on top of the R2R-CE dataset [7]. Then,
we propose a method based on a cross-modal transformer,
fusing together the language features of the instruction with
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Figure 1. Changing “right” to “left” in “Exit the bathroom and
go left (✓right), then turn left at the big clock and go into the
bedroom” leads the agent to terminate exploration in the wrong
location, disregarding the unseen “big clock” along the path.

the observations of the agent, achieving competitive perfor-
mance in solving the task of Detection and Localization of
Instruction Errors, compared to a CLIP Alignment baseline.
Our contributions are summarized below:
• We establish the first benchmark R2R with Instruction

Errors in Continuous Environments (R2RIE-CE), with a
novel dataset and an evaluation protocol.

• We show that state-of-the-art VLN-CE methods are not
robust to instruction errors using our proposed benchmark,
necessitating the study of instruction errors in VLN.

• We propose a novel task Instruction Error Detection and
Localization, with an effective baseline, Instruction Error
Detector & Localizer (IEDL), based on a novel Instruction-
Trajectory compatibility model.

2. R2RIE-CE Dataset
Our R2RIE-CE is constructed by artificially injecting various
types of Instruction Errors into the given natural language
instructions in R2R-CE, carefully considering error priors
induced by human causes, including inaccurate scene mem-
ory and direction confusion. For each type of error, i.e.,
Direction, Object, Room, Room&Object and All, we create
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a corresponding validation set based on the Val Unseen
validation split of R2R-CE. Prior to dataset construction
we have a filtering stage, i.e., episodes must have Direc-
tion words for the validation set with Direction Error, or
episodes must contain Direction, Object, and Room words
for the validation set with All Errors. Following this filtering
stage, we obtain a set of correct episodes EC for each type of
Instruction Error. Then, for each episode ei ∈ EC , we create
a corresponding erroneous episode in which we perturbed
the instruction with the respective error. Specifically, (i) for
the Direction Error, we swap directional words with their
antonym, e.g., left/right, go down/go up, into/out of, etc. (ii)
For the Object Error, we first identify a set of common ob-
ject categories C that frequently appear in a set of language
instructions, excluding synonyms. Each object class ci ∈ C
is associated with a set of object classes Ci comprised of the
classes that often co-locate in the same room. We introduce
an Object Error by swapping the ground-truth object class
ci to a random class cj ∈ Ci; (iii) For the Room Error, we
consider the following set of rooms R that are common in
indoor environments: kitchen, archway, bathroom, bedroom,
gym, lounge, hallway, living room, office, dining room, laun-
dry, restroom. Each room ri ∈ R is associated with a set of
rooms Ri that are often adjacent to ri. We introduce a Room
Error by swapping the ground-truth room ri to a random
room rj ∈ Ri; (iv) For the Room&Object Error, we intro-
duce in an instruction both Room and Object Error; (v) For
the All Error, we introduce in an instruction both Direction
and Room&Object Error. The perturbed episodes will then
be stored in the corresponding set of perturbed episodes, EP .
For each perturbed episode ei ∈ EP , both the error type and
the position of the perturbed word are stored as metadata.
Eventually, for each type of instruction error, we obtain sets
EC and EP .

3. R2RIE-CE Benchmark
With R2RIE-CE dataset, we can evaluate the robustness of
VLN policies, and benchmark the novel task in terms of
instruction error detection and localization, an important
intermediate task for further addressing instruction errors in
VLN policy learning.
Instruction Error Detection and Localization. Error detec-
tion aims to classify if an instruction contains errors, while
localization aims to identify the positions of the error oc-
currences within the instruction. To address this task, we
propose an effective method, short for IEDL, which takes
visual observation embeddings Γ produced by the frozen
policy [1]. A cross-modal multi-layer transformer fuses tra-
jectory set Γ and instruction embeddings Υ. The enriched
[CLS] token is fed into two classification heads, to produce
alignment score σ(a) and error location in the instruction,
respectively. As the task is novel, we also construct a set of
baselines for comparison: (i) Random: We randomly classify

each instruction as correct or wrong, and randomly predict
wrong token indices. (ii) CLIP Alignment (zero-shot): we
extract the set of room and object tokens K from instruction
I via an off-the-shelf POS tagger [4]. Errors are identified by
comparing K with the observed objects and rooms S (labels
are extracted using CLIP [9]) during navigation.
Performance Metrics. We use standard metrics for evaluat-
ing VLN performance as in prior works [2, 3], i.e., Success
Rate (SR), and Success rate weighted by Path Length (SPL).
We evaluate Detection of Instruction Errors using the Area
Under the ROC Curve (AUC, main metric) as in [11]. We
then propose Absolute Token Distance (ATD), a novel met-
ric to assess Instruction Error Localization, defined as the
absolute difference between the predicted position of the
perturbed token and the true position of the perturbed token.

Table 1. We show the performance (SR, SPL and ∆SR%) of [1] on
our proposed benchmark. Then, we show the classification (AUC)
and localization (ATD) performance of different methods.

Error type Policy [1] Random CLIP Align-
ment IEDL

SR ↑ SPL ↑ ∆SR(%) AUC ↑ ATD ↓ AUC ↑ ATD ↓ AUC ↑ ATD ↓

Direction 0.53 0.43 -18.64 0.50 10.54 0.50 11.05 0.59 7.74
Room 0.58 0.49 -6.66 0.50 11.03 0.57 9.63 0.79 7.85
Object 0.56 0.46 -8.47 0.51 10.94 0.59 8.76 0.74 10.14
Room&Object 0.57 0.47 -11.47 0.49 11.56 0.64 7.98 0.90 6.75
All 0.52 0.43 -30.64 0.51 12.22 0.63 8.68 0.93 5.68

Avg. 0.55 0.46 -15.17 0.50 11.26 0.59 9.22 0.82 7.46

Are VLN policies robust to instruction errors? We
report the results in Tab. 1 under the SR, SPL and ∆SR(%)
columns, where ∆SR(%) = SR(EC)− SR(EP). Direction
type of error has the largest effect on the navigation policy,
with a −18.64% of SR. Following that, we have Object error
type with a −8.47% and the Room error with a decrease
of −6.66%. Interestingly, differently from [12], VLN-CE
agents are more affected by perturbation of directional tokens
than by object tokens (−18.64% vs −8.47%).

Can we detect and localize instruction errors? Tab. 1
reports the results regarding error detection by the AUC,
and error localization by ATD. Regarding the detection per-
formance, the random baseline is presented as a means to
identify potential biases and establish a lower-bound, achiev-
ing an AUC of ∼ 0.50, as expected. CLIP Alignment seems
to be effective in the presence of Object and Room types of
errors. We can see that IEDL achieves the best AUC in all
the benchmarks by a large margin. A lower AUC of 0.59
for IEDL also seems to highlight the challenges of the Di-
rection error type. Regarding the localization performance,
CLIP Alignment baseline performs better for all error types
compared to random. Our proposed IEDL achieves the best
localization performance across all benchmarks, except for
the Object, in which CLIP Alignment seems to be particu-
larly effective. Finally, it is worth noticing that the mean
ATD of IEDL is 7.46, which is close to the length of a typical
sub-sentence within each instruction.
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