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Abstract
Large Language Models (LLM) and Vision Language

Models (VLM) enable robots to ground natural language
prompts into control actions to achieve tasks in an open
world. However, when applied to a long-horizon collabora-
tive task, this formulation results in excessive prompting for
initiating or clarifying robot actions at every task step. We
propose Language-driven Intention Tracking (LIT), lever-
aging LLMs and VLMs to model the human user’s long-
term behavior and to predict the next human intention to
guide the robot for proactive collaboration. We demon-
strate smooth coordination between a LIT-based collabo-
rative robot and a human in collaborative cooking tasks.

1. Introduction
The groundbreaking advances in Large Language Models
(LLM) and Vision Language Models (VLM) endow robots
with exceptional cognition capabilities and reasoning skills
to both understand the surrounding open world and follow
natural language commands of human users [2, 5]. More
recent works explore conversations between the human user
and the robot to allow the robot to perform multi-step tasks
or clarify ambiguity of the human command [10, 12].

When the philosophy of grounding natural language
commands into robot control policies is applied to human-
robot collaboration (HRC), the human user may have to
have a conversation with the robot at each step of the
long-horizon task [12]. This situation rarely happens in
human-human collaboration, as a human is able to track the
progress on the partner’s side based on their shared knowl-
edge over the task. For examples, a worker rarely has to
have a conversation with a co-worker in a collaborative as-
sembly task on which they have collaborated many times,
and a sous-chef rarely has to have a conversation with the
chef when creating a regular dish together.

To address this challenge in human-robot collaboration,
the robot needs to build an effective understanding of not
only the environment, but also the human user. This
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work proposes Language-driven Intention Tracking (LIT)
to model long-term behavior of the human user, and inte-
grates LIT into an LLM-driven collaborative robot frame-
work. LIT extends intention tracking [3] by applying an
LLM to model measurement likelihood and transition prob-
abilities in the probabilistic graphical model of human in-
tentions, which is defined by grounding an overall task
prompt (e.g., make a salad) with understanding of the scene
using LLM and VLM models. Note this is the only prompt
needed from the human user in LIT framework. LIT uses a
VLM to generate text descriptions of the human user’s be-
havior in the frames as measurements to track the human
user’s intention and filter out hallucinations. Intention pre-
diction in the near-term allows the collaborative robot to
proactively assist the human user. By harnessing founda-
tion models, we believe the LIT framework can generalize
to any collaborative tasks. We demonstrate the effectiveness
of the LIT framework in a scenario where the collaborative
robot acts as a sous-chef to assist a human user in cooking.

2. Language-driven Intention Tracking

Problem Formulation. The human user wants to make a
dish, but all the required materials and tools are not reach-
able by the human but the robot. The robot needs to act as a
sous-chef to coordinate with the human by passing essential
materials and tools at appropriate times while not making
the human’s cooking table overly occupied with unneces-
sary items at the moment. The robot is assumed to only
receive the prompt at the beginning on what dish is going to
be made, and will not receive prompts during collaboration.

System Overview. As presented in Fig. 1, the open
scene understanding module detects objects in the scene
and generate potential grasp options. The task graph rea-
soning module takes the detected objects and the overall
task prompt as input to generate a list of task steps, which
we define as intention. As some steps of the overall task
can switch order without impact on the outcome, the LLM
checks on reversibility of task step sequences, and builds a
task graph. The Language-driven Intention Tracking mod-
ule uses the task graph to build the probabilistic graphical



Figure 1. Language-driven Intention Tracking (LIT) based collaborative robot framework.
model for intention transition. The VLM is used to generate
text descriptions from frames as measurements. We com-
pute time-varying transition probabilities and make predic-
tion steps, and use measurements to compute measurement
likelihood and make update steps to track the human inten-
tion. The intention-grounded planning module makes an
additional prediction step on the current intention posterior,
and manipulate the objects relevant to the predicted next in-
tention to proactively collaborate with the human.

We choose LLaVA [6–8] with a 13-billion parameter
Vicuna [1] backbone (derived from Llama 2 [11]) as the
VLM in the system. Note that we use the same model as
the LLM for consistent performance by inputting the text
prompt with a full-black image. The VLM is cascaded with
Grounding DINO [9], Segment Anything (SAM) [4], and
principal component analysis to detect, segment all objects
and perform grasp synthesis. The collaborative robot is a
UR5e arm equipped with a Robotiq Hand-E Gripper. We
use Intel RealSense RGBD cameras to provide a top-down
view of the robot table with objects on it, and to provide
a front view of the human user’s behavior. We use Robot
Operating System (ROS) to build the LIT framework.

Language-driven Intention Tracking Method. We de-
fine human intention at time t as a discrete variable Gt.
During intention tracking, we iterate prediction and update
steps of Bayesian filtering as presented in Eq. 1 to get the
posterior of the human intention Gt conditioned on mea-
surements X1:t.

P (gt+1|x1:t) =
∑
gt

P (gt+1|gt, x1:t)P (gt|x1:t)

P (gt+1|x1:t+1)∝P (xt+1|x1:t, gt+1)P (gt+1|x1:t)

(1)

We introduce Language Probabilistic Graphical Model
to perform intention tracking, where gt is the text of the
task step the human user is performing at time t, and xt is

the textual description of the human behavior in the camera
frame at time t. To calculate a conditional probability with
language random variables (e.g. P (A = a|B = b, C = c)),
we create prompts of two part: the conditional part de-
scribes B = b and C = c, and the query part asks about
A and a. We propose two methods to compose the query
part: point estimate and distribution approximation.

The point estimate method asks the LLM to generate one
value of A by “what do you think A would be?”, and com-
pute a similarity score [13] of the generated text with respect
to a to quantify P (a|b, c). The distribution approximation
method requires A to be discrete. This method asks the
LLM to sample a list of values of A by “what do you think
A would be? Provide N examples.”, allocates these values
to the closest possible values of A, and forms a statistical es-
timate of the P (a|b, c). We use the point estimate method to
calculate measurement likelihood P (xt+1|x1:t, gt+1), and
the distribution approximation method to calculate intention
transition probability P (gt+1|gt, x1:t). Fig. 2 presents LIT
in a human cooking demonstration.

Figure 2. LIT in a human cooking demonstration. Snapshots show
the moments when the human intention changes.
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