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Luca Scofano'*  Alessio Sampieri'* Tommaso Campari®* Valentino Sacco’

Indro Spinellit

! Sapienza University of Rome

Abstract

The paper proposes a Social Dynamics Adaptation
model (SDA) for Social Navigation, which involves a
robot’s ability to navigate human-centric environments
while maintaining a safe distance and adhering to so-
cial norms. The key challenge is to process human tra-
jectories, which are partially observable from the robot’s
perspective and complex to compute. The proposed SDA
model uses a two-stage Reinforcement Learning frame-
work: the first stage involves learning to encode human
trajectories and the second stage infers social dynam-
ics from the robot’s state-action history. This approach
has been tested on the Habitat 3.0 platform, achieving
state-of-the-art performance in finding and following hu-
mans. The extended version of this work is available at:
https://arxiv.org/abs/2404.11327.

1. Introduction

Embodied Artificial Intelligence (EAI) has significantly
advanced traditional navigation techniques by introducing
robots into real-life environments. Now, when navigating
human-centric environments, the agents must consider hu-
man movements and behaviors, changing the focus to so-
cially aware navigation. Social navigation agents need to
locate, track, and interact with humans safely and in a so-
cially acceptable manner.

Previous studies have characterized Social Navigation
as a variation of PointGoal Navigation, where agents aim
to reach destinations while considering human movements
as dynamic obstacles [3, 5, 6]. Habitat 3.0 [4] introduced
a lifelike environment with human avatars, where human-
agent interactions are present in a dynamic, controlled,
and safe setting. However, this complexity also presents
challenges other than collision avoidance, such as locat-
ing/following the humans in the scene.
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Existing methods for Social Navigation often rely on
privileged information unavailable in real-world scenarios
or fail to capture social dynamics and norms adequately.
For instance, [5, 6] and the current SoOA model on Habitat
3.0 [4] use GPS and compass sensors for perfect humanoid
localization, which may be impractical during real-world
inference. In contrast, [3, 7] do not consider social factors
influencing human behaviour. [1] models some social fac-
tors but falls short in capturing the cooperative nature of
social agents.

This paper introduces a novel Social Dynamics Adapta-
tion model (SDA) to address these limitations. SDA is a
two-stage model (Fig. 1): the first stage trains a base policy
using human trajectories encoded into a latent vector, and
the second stage infers social dynamics from the robot’s
state and action history. Unlike prior methods, deploying
SDA after this last stage allows the agent to react to hu-
man movements without having access to privileged infor-
mation.

2. Methodology

Stage 1: Social Policy In the first stage, SDA takes as
input image features x; and the action at the previous time-
step a;—1. We add another input to this pipeline, namely a
latent vector z; built by encoding the humanoid privileged
information, e;_n.t—1 as zz = p(ei—n.t—1) and thus we
can define the next action a; = (x4, az_1, 2¢).

Where the trajectory encoder () is implemented as Mul-
tilayer Perceptrons (MLPs). Intuitively, training everything
with the same objective z; encodes the social dynamics that
led the agent to maximize its reward, adapting to human
movement patterns. The objective retains its usual formula-
tion [5] without any explicit reference to the human trajec-
tories.

Stage 2: Social Dynamics Regression We aim to extract
and exploit social cues directly from the robot’s perception
and eliminate the need for auxiliary devices like GPS track-
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Figure 1. SDA framework. Stage 1, jointly learns to encode human trajectories and a motion policy. Stage 2 infers the social dynamics
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from the state-action history and feeds them to the frozen policy.
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Table 1. Social Navigation results. GT denotes ground truth privileged information and * denotes reproduced results.

ers on humanoids. Inspired by [2], we introduce the “social
dynamics” module (Adapter), parametrized by an MLP
that takes as input the recent history of the robot’s states
Ti—N:t—1 and actions a;—p.;—1 to generate a new latent

vector 2y = Y(Tr—Nit—1, Q- Nit—1)-

We obtain the state-action history by deploying the agent
in the environment with optimal policy 7* obtained af-
ter the first stage and the latent vector Z; and get a; =
7*(x¢,at—1,2:). During this process, we optimize the
Adapter, MLP, with a supervised regression objective,
Mean Squared Error (MSE), to recover the original infor-
mation in z;.

Once we finalize the Adapter training, instead of rely-
ing on the privileged information, we can depend upon the
robot’s states x;_n.;—1 and actions a;_.;—1 to generate
Zt, serving as an estimate of the actual latent social dynam-
ics vector z;. Doing so enables the agent to estimate social
dynamics online, improving its performance in dynamic en-
vironments and enhancing its social navigation capabilities,
freeing it from dependence upon external sensors.

3. Results

The first section of Table 1 shows the performance of a
heuristic expert with extensive information. The follow-
ing section sets different upper bounds using models trained
and tested using ground truth (GT) privileged information.
The third section reports methods tested without privileged
information. SDA-Stage 1 provides a lower upper bound for
S (finding success) and SPS (shortest path to human) due to
the absence of the humanoid GPS (hGPS).

SDA-Stage?2 maintains the performances of Stage 1 by
correctly inferring social dynamics, despite the lack of hu-
man trajectory input. SDA-Stage2 outperforms others in
finding related metrics, increasing S and SPS by 6% and
4%. In fact, it locates the humanoid faster (438 vs. 540 avg.
steps) on a maximum episode length of 1500.

We also improve episode success (ES), where the agent
finds and follows the humanoid for at least 400 steps with-
out colliding. We follow for longer (390 vs. 218 avg. steps),
improving the following rate (F). Episodes do not necessar-
ily terminate after 400, thus our higher reported collision
rate (CR). Otherwise, the C'R would be 0.39 for SDA and
0.38 for the best baseline.
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